Elasticsearch:带有自查询检索器的聊天机器人示例

news2024/11/20 17:38:25

本工作簿演示了 Elasticsearch 的自查询检索器 (self-query retriever) 将问题转换为结构化查询并将结构化查询应用于 Elasticsearch 索引的示例。

在开始之前,我们首先使用 langchain 将文档分割成块,然后使用 ElasticsearchStore.from_documents 创建一个向量存储并将数据索引到 elasticsearch。

然后,我们将看到一些示例查询,展示了由 elasticsearch 驱动的自查询检索器的全部功能。

安装

如果你还没有安装好自己的 Elasticsearch 及 Kibana,请参考文章:

安装 Elasticsearch 及 Kibana

如果你还没有安装好自己的 Elasticsearch 及 Kibana,那么请参考一下的文章来进行安装:

  • 如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch

  • Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana

在安装的时候,请选择 Elastic Stack 8.x 进行安装。在安装的时候,我们可以看到如下的安装信息:

Python 安装包

我们需要安装 Python 版本 3.6 及以上版本。我们还需要安装如下的 Python 安装包:

python3 -m pip install -qU lark elasticsearch langchain openai
$ pwd
/Users/liuxg/python/elser
$ python3 -m pip install -qU lark elasticsearch langchain openai
$ pip3 list | grep elasticsearch
elasticsearch             8.11.1
rag-elasticsearch         0.0.1        /Users/liuxg/python/rag-elasticsearch/my-app/packages/rag-elasticsearch

在本练习中,我们将使用最新的 Elastic Stack 8.11 来进行展示。

环境变量

在启动 Jupyter 之前,我们设置如下的环境变量:

export ES_USER="elastic"
export ES_PASSWORD="yarOjyX5CLqTsKVE3v*d"
export ES_ENDPOINT="localhost"
export OPENAI_API_KEY="YOUR_OPEN_AI_KEY"

请在上面修改相应的变量的值。特别是你需要输入自己的 OPENAI_API_KEY。

拷贝 Elasticsearch 证书

我们把 Elasticsearch 的证书拷贝到当前的目录下:

$ pwd
/Users/liuxg/python/elser
$ cp ~/elastic/elasticsearch-8.11.0/config/certs/http_ca.crt .
overwrite ./http_ca.crt? (y/n [n]) y
$ ls http_ca.crt 
http_ca.crt

创建应用

导入 python 包

我们在当前的目录下创建 jupyter notebook:Chatbot Example with Self Query Retriever.ipynb

from langchain.schema import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import ElasticsearchStore
from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo

创建文档

接下来,我们将使用 langchain 模式文档创建包含电影摘要的文档列表,其中包含每个文档的 page_content 和元数据。

docs = [
    Document(
        page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
        metadata={"year": 1993, "rating": 7.7, "genre": "science fiction", "director": "Steven Spielberg", "title": "Jurassic Park"},
    ),
    Document(
        page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
        metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2, "title": "Inception"},
    ),
    Document(
        page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
        metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6, "title": "Paprika"},
    ),
    Document(
        page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
        metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3, "title": "Little Women"},
    ),
    Document(
        page_content="Toys come alive and have a blast doing so",
        metadata={"year": 1995, "genre": "animated", "director": "John Lasseter", "rating": 8.3, "title": "Toy Story"},
    ),
    Document(
        page_content="Three men walk into the Zone, three men walk out of the Zone",
        metadata={
            "year": 1979,
            "rating": 9.9,
            "director": "Andrei Tarkovsky",
            "genre": "science fiction",
            "rating": 9.9,
            "title": "Stalker",
        },
    ),
]

连接到 Elasticsearch

我们将使用我们本地构建的 Elasticsearch 集群进行连接。我们可以参考之前的文章 “Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)”。

from dotenv import load_dotenv
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import ElasticKnnSearch
from langchain.text_splitter import CharacterTextSplitter
from urllib.request import urlopen
import os, json
 
load_dotenv()
 
openai_api_key=os.getenv('OPENAI_API_KEY')
elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')
elastic_endpoint=os.getenv("ES_ENDPOINT")
elastic_index_name='elastic-knn-search'
from elasticsearch import Elasticsearch
 
url = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
connection = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)
 
print(connection.info())
 
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
dims=1536
 

es = ElasticsearchStore.from_documents( 
                            docs,
                            embedding = embeddings, 
                            es_url = url, 
                            es_connection = connection,
                            index_name = elastic_index_name, 
                            es_user = elastic_user,
                            es_password = elastic_password)

设置查询检索器

接下来,我们将通过提供有关文档属性的一些信息和有关文档的简短描述来实例化自查询检索器。

然后我们将使用 SelfQueryRetriever.from_llm 实例化检索器 (retriever)

metadata_field_info = [
    AttributeInfo(
        name="genre",
        description="The genre of the movie. Can be either 'science fiction' or 'animated'.",
        type="string or list[string]",
    ),
    AttributeInfo(
        name="year",
        description="The year the movie was released",
        type="integer",
    ),
    AttributeInfo(
        name="director",
        description="The name of the movie director",
        type="string",
    ),
    AttributeInfo(
        name="rating", description="A 1-10 rating for the movie", type="float"
    ),
]

document_content_description = "Brief summary of a movie"

# Set up openAI llm with sampling temperature 0
llm = OpenAI(temperature=0, openai_api_key=openai_api_key)

# instantiate retriever
retriever = SelfQueryRetriever.from_llm(
    llm, es, document_content_description, metadata_field_info, verbose=True
)

使用自查询检索器回答问题

现在我们将演示如何使用 RAG 的自查询检索器。

from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain.schema import format_document

LLM_CONTEXT_PROMPT = ChatPromptTemplate.from_template("""
Use the following context movies that matched the user question. Use the movies below only to answer the user's question.

If you don't know the answer, just say that you don't know, don't try to make up an answer.

----
{context}
----
Question: {question}
Answer:
""")

DOCUMENT_PROMPT = PromptTemplate.from_template("""
---
title: {title}                                                                                   
year: {year}  
director: {director}    
---
""")

def _combine_documents(
    docs, document_prompt=DOCUMENT_PROMPT, document_separator="\n\n"
):
    doc_strings = [format_document(doc, document_prompt) for doc in docs]
    return document_separator.join(doc_strings)


_context = RunnableParallel(
    context=retriever | _combine_documents,
    question=RunnablePassthrough(),
)

chain = (_context | LLM_CONTEXT_PROMPT | llm)

chain.invoke("What movies are about dreams and it was released after the year 2009 but before the year 2011?")

上面的代码可以在地址:https://github.com/liu-xiao-guo/semantic_search_es/blob/main/Chatbot%20Example%20with%20Self%20Query%20Retriever.ipynb下载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1351292.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IIS通过ARR实现负载均衡

一、实现整体方式介绍 项目中部署在windows服务器上的项目,需要部署负载均衡,本来想用nginx来配置的,奈何iis上有几个项目,把80端口和443端口占用了,nginx就用不了了(因为通过域名访问的,必须要用80和443端口),只能通过IIS的方式实现了。 这里用2个服务在一台机器上…

一个简单的接口自动化测试框架:Python+Requests+Pytest+Allure

项目结构 project:api_test ——api_keyword ————api_key.py:接口关键字驱动类 ——case ————test_cases.py:测试套件和测试用例 ——report_allure(无需创建):allure报告 ——result(…

git 如何撤销历史某次merge

git,如何 撤销某一次历史提交或merge,并保留该版本的后续提交? 场景1: 你有两个功能迭代版本的分支,一个是 15 号上线,一个是25号上线。5号的时候产品突然说,这两个版本一起上,然后…

【计算机图形学】NAP: Neural 3D Articulation Prior

文章目录 1. 这篇论文做了什么事,有什么贡献?2. Related Work铰接物体建模3D中的Diffusion model扩散模型 3. Pipeline铰接树参数化基于Diffusion的铰接树生成去噪网络 4. 实验评价铰接物体生成——以往做法与本文提出的新指标NAP捕捉到的铰接物体分布质…

gazebo卡住不动

可以看到这个sdf文件里面含有网络连接,有的sdf文件看上去几十个kb, 以为很小,但是里面含有网络连接就不知道有多大了,所以也可能会卡住,然后就会出现这个

无线路由器的五种工作模式:

1.Router,即无线路由模式,这也是我们最常用的一种工作方式,一般家里宽带连接,将宽带猫连接在无线路由的WAN口上,然后做拨号帐号设置,就用这个模式即可。 在Router(无线路由)模式下&a…

linux下docker搭建mysql8

1:环境信息 centos 7,mysql8 安装docker环境 2.创建mysql容器 2.1 拉取镜像 docker pull mysql:8.0.23 2.2 查询镜像拉取成功 docker images 2.3 创建挂载的目录文件 mkdir /usr/mysql8/conf mkdir /usr/mysql8/data ##给data文件赋予操作权限 chmod 777 /…

关于时间格式yyyy-M-d或yyyy-MM-d到yyyy-MM-dd的转换

工作时遇到前端传的时间格式是"2023-12-3 17:41:52",和"2023-1-1 17:41:52"但是我想要的是"2023-12-03 17:41:52"和"2023-01-01 17:41:52"。下面给大家分享几个解决方法 方法一: 找前端!让他改&…

TCP_可靠数据传输原理

引言 在网络通信中,TCP是确保数据可靠传输的关键协议。但在我们深入研究TCP拥塞控制技术之前,让我们先探索可靠数据传输的原理,特别是TCP头部中一些重要字段的作用。 网络层提供了点对点的通信服务,努力交付数据报,但…

[概率论]四小时不挂猴博士

贝叶斯公式是什么 贝叶斯公式是概率论中的一个重要定理,用于计算在已知一些先验信息的情况下,更新对事件发生概率的估计。贝叶斯公式的表达式如下: P(A|B) P(B|A) * P(A) / P(B) 其中,P(A|B)表示在事件B发生的条件下事件A发生的概…

Android App从备案到上架全过程

不知道大家注意没有,最近几年来,新的移动App想要上架是会非常困难的,并且对于个人开发者和小企业几乎是难如登天,各种备案和审核。但是到底有多难,或许只有上架过的才会有所体会。 首先是目前各大应用市场陆续推出新的声明,各种备案截止日期到12月就要到最后期限责令整改…

wps将姓名处理格式为:姓**

1.打开wps,在要处理数据右侧一个单元格 输入公式:LEFT(A1,1)&"**",然后回车 2.按住ctrl和处理好的数据的右下角小方框,往下拖动即可生成格式为:姓** 格式的数据 3.复制生成的数据,右键选择 “…

三、HTML元素

一、HTML元素 HTML 文档由 HTML 元素定义。 *开始标签常被称为起始标签(opening tag),结束标签常称为闭合标签(closing tag)。 二、HTML 元素语法 HTML 元素以开始标签起始。HTML 元素以结束标签终止。元素的内容是…

Zero-shot:半监督:pansharpening

Zero-shot semi-supervised learning for pansharpening (用于全色锐化的零次半监督学习) 全色锐化是指融合低分辨率多光谱图像(LRMS)和高分辨率全色(PAN)图像以生成高分辨率多光谱图像(HRMS&…

履机乘变,轻舟便楫:源启分布式PaaS深度赋能企业级技术平台建设

导语 源启分布式PaaS平台围绕应用视角为用户提供应用运行的全生命周期管控能力,提供注册中心、服务路由、网关、服务治理等中间件技术支持,实现应用之间的联通,解决客户多厂商产品不兼容、产品组合不可选择、孤岛效应等问题,满足…

CSS animation动画和关键帧实现轮播图效果HTML

CSS animation动画和关键帧实现轮播图效果HTML 这轮播图效果使用h5和css3实现效果&#xff0c;不需要js控制&#xff0c;但是其中的缺点就是不能使用鼠标进行切换效果。 具有代码如下 <!DOCTYPE html> <html lang"en"><head><meta charset&quo…

MACOS Atrust服务异常

MAC版Atrust服务异常 点击进入办公后出现提示其一&#xff1a; 核心服务未启动&#xff0c;部分功能存在异常&#xff0c;确定重新启动吗&#xff1f; 可能的原因&#xff1a; 1.上次已完全退出客户端 2.核心服务被其他程序优化禁用 点击重新启动后&#xff0c;出现提示&#x…

M3u8视频地址如何转为mp4视频

在当今数字化的时代&#xff0c;视频格式的转换已成为日常需求。M3u8格式的视频由于其分段的特性&#xff0c;常常给播放和编辑带来不便。而MP4格式则因其通用性和高质量而广受欢迎。那么&#xff0c;如何将M3u8视频地址转换为MP4格式呢&#xff1f;接下来&#xff0c;我们将为…

iOS 小组件开发

iOS14之后Apple引入了新的WidgetKit&#xff0c;舍弃了原有额TodayExtension。 开发准备&#xff1a; 新的WidgetExtension只能通过SwiftUI进行开发&#xff1b; Widget有三种尺寸&#xff1a;systemSmall、 systemMedium、systemLarge&#xff0c;三种尺寸对应固定的UI类型布…

从0创建springboot项目并创建GitHub仓库

创建springboot项目 我是使用idea来创建一个新的项目&#xff0c;jdk17&#xff0c;maven。 先选一个spring web就够了&#xff0c;后续需要啥功能再慢慢添加 写个简单controller测试一下能不能成功启动项目 启动项目&#xff0c;本地访问http://localhost:8080/test/test …