数据结构模拟实现LinkedList双向不循环链表

news2025/1/12 19:24:02

目录

一、双向不循环链表的概念

二、链表的接口

三、链表的方法实现

(1)display方法

(2)size方法

(3)contains方法

(4)addFirst方法

(5)addLast方法

(6)addIndex方法

(7)remove方法

(8)removeAllKey方法

(9)clear方法

四、最终代码


一、双向不循环链表的概念

双向不循环链表中的节点有三个域,一个是存储数据的val域,一个是前驱prev域,还有一个是下个节点next域,和单向不同的就是多了一个前驱域。如图:

定义一个MyLinkedList类,这个类包含要模拟实现的方法,还有一个内部类ListNode,这个内部类就是链表的节点,代码如下:

public class MyLinkedList implements Ilist{
    public ListNode head;//头结点
    public ListNode last;//尾结点

    static class ListNode {
        int val;
        ListNode next;
        ListNode prev;
        public ListNode(int val) {
            this.val = val;
        }
    }
}


二、链表的接口

代码如下:

public interface Ilist {
    //头插法
    void addFirst(int data);
    //尾插法
    void addLast(int data);
    //任意位置插入,第一个数据节点为0号下标
    void addIndex(int index,int data);
    //查找是否包含关键字key是否在单链表当中
    boolean contains(int key);
    //删除第一次出现关键字为key的节点
    void remove(int key);
    //删除所有值为key的节点
    void removeAllKey(int key);
    //得到单链表的长度
    int size();
    void clear();
    void display();
}

三、链表的方法实现

(1)display方法

此方法是打印所有链表节点的val值,因此要遍历一遍链表的节点。代码如下:

    public void display() {
        ListNode cur = this.head;
        while (cur != null) {
            System.out.print(cur.val + " ");
            cur = cur.next;
        }
        System.out.println();
    }

(2)size方法

此方法计算链表中有多少个节点,所以也要遍历一遍链表,代码如下:

    public int size() {
        ListNode cur = this.head;
        int count = 0;
        while (cur != null) {
            count++;
            cur = cur.next;
        }
        return count;
    }

(3)contains方法

此方法查看是否有key值,有就返回true,没有就返回false,所以也要遍历一遍链表,代码如下:

    public int size() {
        ListNode cur = this.head;
        int count = 0;
        while (cur != null) {
            count++;
            cur = cur.next;
        }
        return count;
    }

(4)addFirst方法

此方法是头插方法,参数是链表的val域的值,所以调用此方法时,要创建一个节点,再把这个节点进行头插;头插时,要修改要插入节点的next域,指向原来的头结点,还有原来头结点的prev域,指向要插入的节点,最后再把头结点改为要插入的这个节点,如图:绿色箭头是修改指向

因为是新建的节点,所以这个节点的prev和next域都是null

修改完后,如图:

代码如下:

    public void addFirst(int data) {
        ListNode cur = new ListNode(data);
        if(this.head == null) {
            this.head = cur;
            this.last = cur;
        } else {
            cur.next = this.head;
            this.head.prev = cur;
            this.head = cur;
        }
    }

执行效果如下:

(5)addLast方法

此方法是尾插法,这里的尾插法时间复杂度是O(1),因为双向链表有一个记录尾结点的last,所以尾插的时候直接在尾结点插入要插入的节点,修改原来的尾结点的next域,要插入的节点prev修改成原来的尾结点,最后再把尾结点last修改成插入的节点,代码如下:

    public void addLast(int data) {
        ListNode cur = new ListNode(data);
        if(last == null) {
            head = cur;
            last = cur;
        } else {
            last.next = cur;
            cur.prev = last;
            last = cur;
        }
    }

执行效果如下:

(6)addIndex方法

此方法是在指定位置插入节点,第一要检查要插入位置的index下标是否合法,不合法就抛异常,这里定义第一个节点下标为0,第二个节点下标为1,依次类推,如果要插入位置的下标是0,就是头插,如果要插入位置的下标是链表长度(size方法),就是尾插;

要插入的位置在链表中间,我们要找出指定位置的前一个节点,修改前一个节点的next域,修改成要插入的节点,还有指定位置原来的节点的prev域也要修改,修改成要插入的节点。代码如下:

    public void addIndex(int index, int data) {
        //检查下标是否合法
        if(index < 0 || index > size()) {
            throw new IndexException("下标不合法");
        }
        if(index == 0) {
            addFirst(data);
            return;
        }
        if (index == size()) {
            addLast(data);
            return;
        }
        ListNode cur = new ListNode(data);
        ListNode prev = this.head;
        int count = 0;
        while (count < index - 1) {
            prev = prev.next;
            count++;
        }
        ListNode prevNext = prev.next;
        prev.next = cur;
        cur.prev = prev;
        cur.next = prevNext;
        prevNext.prev = cur;
    }
//自定义异常类
public class IndexException extends RuntimeException{
    public IndexException(String e) {
        super(e);
    }
}

执行效果如下:

(7)remove方法

此方法是移除第一个值为key的链表节点的方法,参数是就是key;要移除某一个节点,就要从头遍历一遍链表,如果没找到key值,就直接返回,不做任何操作;

这里要提前处理一些特殊情况,如果头结点的val值就是key,就要把head放在head的next域,然后判断这时候head是不是空,如果head不是空,head的prev就要修改成空,如果head是空,就要把last设为空,直接返回。

如果找到了,就要找要删除节点的前一个节点,这里会分两种情况,一种是要删除的节点后面没有节点了(尾结点),这时我们把要删除节点的前一个节点的next域改成null,last改成前一个节点;如果要删除的节点后面有节点,就要把前一个节点的next域改成要删除的节点的next,后一个的prev域改成前一个节点,代码如下:

    public void remove(int key) {
        if(head == null) {
            return;
        }
        if(head.val == key) {
            head = head.next;
            if(head != null) {
                head.prev = null;
            } else {
                last = null;
                return;
            }
        }
        ListNode prev = findPrev(key);
        if(prev == null) {
            //没有要删的元素
            return;
        }
        ListNode cur = prev.next;
        if(cur.next != null) {
            prev.next = cur.next;
            cur.next.prev = cur.prev;
        } else {
            //最后一个元素
            prev.next = cur.next;//null
            last = prev;
        }
    }
    //找到要删除节点的前一个节点
    private ListNode findPrev(int key) {
        ListNode cur = this.head;
        ListNode curNext = cur.next;
        while (curNext != null) {
            if(curNext.val != key) {
                cur = cur.next;
                curNext = curNext.next;
            } else {
                return cur;
            }
        }
        return null;
    }

执行效果如下:

(8)removeAllKey方法

此方法是删除所有节点的val值为key的方法,所以,我们要遍历一遍链表,如果head为空的话,就直接返回,不做任何操作;

我们定义prev是头结点,cur是头结点的next节点(要删除的节点),从头到尾遍历的是cur,如果cur的val值不等于key,prev和cur都要往后走一步;如果cur的val值等于key,会分成两种情况,就是cur后面是有没有节点,如果后面有节点,prev节点的next域就要改成cur的next,cur的下一个节点的prev域要改成prev,然后cur往后走一步;如果cur后面的节点为空,就直接把prev节点的next域改成空,把last改成prev,cur还要往后走一步结束循环。

最后不要忘了头结点还没有判断,要判断头结点的val值是否和key相等,如果不相等就不做任何操作,相等就把头结点head改成头结点的next,此时的头结点的prev改成null,注意,这里修改头结点的prev,要头结点head不为空,才能执行上面的操作,不然会空指针异常。

    public void removeAllKey(int key) {
        if(head == null) {
            return;
        }
        ListNode prev = this.head;
        ListNode cur = this.head.next;
        while (cur != null) {
            if(cur.val == key) {
                if(cur.next != null) {
                    prev.next = cur.next;
                    cur.next.prev = prev;
                } else {
                    prev.next = cur.next;//null
                    last = prev;
                }
                cur = cur.next;
            } else {
                prev = prev.next;
                cur = cur.next;
            }
        }
        if(head.val == key) {
            head = head.next;
            if(head != null) {
                head.prev = null;
            }
        }
    }

执行效果如下:

(9)clear方法

此方法是把链表中的所有节点中所有域都置为空,所以要遍历一遍链表,把节点prev和next域改为null,因为这里的val域类型是int,所以不用修改val域,代码如下:

    public void clear() {
        ListNode cur = this.head;
        while (cur != null) {
            ListNode curNext = cur.next;
            cur.next = null;
            cur.prev = null;
            cur = curNext;
        }
        head = null;
        last = null;
    }

执行效果如下:


四、最终代码

public class MyLinkedList implements Ilist{
    public ListNode head;//头结点
    public ListNode last;//尾结点

    static class ListNode {
        int val;
        ListNode next;
        ListNode prev;
        public ListNode(int val) {
            this.val = val;
        }
    }

    @Override
    public void addFirst(int data) {
        ListNode cur = new ListNode(data);
        if(this.head == null) {
            this.head = cur;
            this.last = cur;
        } else {
            cur.next = this.head;
            this.head.prev = cur;
            this.head = cur;
        }
    }

    @Override
    public void addLast(int data) {
        ListNode cur = new ListNode(data);
        if(last == null) {
            head = cur;
            last = cur;
        } else {
            last.next = cur;
            cur.prev = last;
            last = cur;
        }
    }

    @Override
    public void addIndex(int index, int data) {
        //检查下标是否合法
        if(index < 0 || index > size()) {
            throw new IndexException("下标不合法");
        }
        if(index == 0) {
            addFirst(data);
            return;
        }
        if (index == size()) {
            addLast(data);
            return;
        }
        ListNode cur = new ListNode(data);
        ListNode prev = this.head;
        int count = 0;
        while (count < index - 1) {
            prev = prev.next;
            count++;
        }
        ListNode prevNext = prev.next;
        prev.next = cur;
        cur.prev = prev;
        cur.next = prevNext;
        prevNext.prev = cur;
    }

    @Override
    public boolean contains(int key) {
        ListNode cur = this.head;
        while (cur != null) {
            if(cur.val == key) {
                return true;
            }
            cur = cur.next;
        }
        return false;
    }

    @Override
    public void remove(int key) {
        if(head == null) {
            return;
        }
        if(head.val == key) {
            head = head.next;
            if(head != null) {
                head.prev = null;
            } else {
                last = null;
                return;
            }
        }
        ListNode prev = findPrev(key);
        if(prev == null) {
            //没有要删的元素
            return;
        }
        ListNode cur = prev.next;
        if(cur.next != null) {
            prev.next = cur.next;
            cur.next.prev = cur.prev;
        } else {
            //最后一个元素
            prev.next = cur.next;//null
            last = prev;
        }
    }

    private ListNode findPrev(int key) {
        ListNode cur = this.head;
        ListNode curNext = cur.next;
        while (curNext != null) {
            if(curNext.val != key) {
                cur = cur.next;
                curNext = curNext.next;
            } else {
                return cur;
            }
        }
        return null;
    }

    @Override
    public void removeAllKey(int key) {
        if(head == null) {
            return;
        }
        ListNode prev = this.head;
        ListNode cur = this.head.next;
        while (cur != null) {
            if(cur.val == key) {
                if(cur.next != null) {
                    prev.next = cur.next;
                    cur.next.prev = prev;
                } else {
                    prev.next = cur.next;//null
                    last = prev;
                }
                cur = cur.next;
            } else {
                prev = prev.next;
                cur = cur.next;
            }
        }
        if(head.val == key) {
            head = head.next;
            if(head != null) {
                head.prev = null;
            }
        }
    }

    @Override
    public int size() {
        ListNode cur = this.head;
        int count = 0;
        while (cur != null) {
            count++;
            cur = cur.next;
        }
        return count;
    }

    @Override
    public void clear() {
        ListNode cur = this.head;
        while (cur != null) {
            ListNode curNext = cur.next;
            cur.next = null;
            cur.prev = null;
            cur = curNext;
        }
        head = null;
        last = null;
    }

    @Override
    public void display() {
        ListNode cur = this.head;
        while (cur != null) {
            System.out.print(cur.val + " ");
            cur = cur.next;
        }
        System.out.println();
    }
}

//自定义异常类
public class IndexException extends RuntimeException{
    public IndexException(String e) {
        super(e);
    }
}

都看到这了,点个赞再走吧,谢谢谢谢谢!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1349215.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python开发的app有哪些,python如何开发小软件

这篇文章主要介绍了python开发的app有哪些&#xff0c;具有一定借鉴价值&#xff0c;需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获&#xff0c;下面让小编带着大家一起了解一下。 Python 无处不在&#xff0c;可以说是现代的 C 编程语言&#xff0c;你可以在任何地…

JavaScript的三种引入的方式

目录 (一).什么是JS1.1JS的特点1.2JS的组成 (二).JS引用的三种方式2.1标签引用&#xff08;或嵌入式)2.2文件引用&#xff08;外链式&#xff09;2.3行内式 (三).JS三种引用方式的优缺点1.行内方式&#xff1a;2.标签引用&#xff08;或嵌入式&#xff09;&#xff1a;3.文件引…

Codeforces Round 900 (Div. 3)(A-F)

比赛链接 : Dashboard - Codeforces Round 900 (Div. 3) - Codeforces A. How Much Does Daytona Cost? 题面 : 思路 : 在序列中只要找到k&#xff0c;就返回true ; 代码 : #include<bits/stdc.h> #define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)…

[Redis实战]分布式锁

四、分布式锁 4.1 基本原理和实现方式对比 分布式锁&#xff1a;满足分布式系统或集群模式下多进程可见并且互斥的锁。 分布式锁的核心思想就是让大家都使用同一把锁&#xff0c;只要大家使用的是同一把锁&#xff0c;那么我们就能锁住线程&#xff0c;不让线程进行&#xf…

机械过滤器(石英砂过滤器)和多介质过滤器的区别 工作原理动画

​ 1&#xff1a;机械过滤器多介质石英砂过滤器介绍 机械过滤器&#xff1a;预处理水质的关键设备 机械过滤器&#xff0c;也被称为压力式过滤器&#xff0c;是纯水制备过程中不可或缺的预处理设备。它在水处理系统中扮演着重要的角色&#xff0c;能够有效地去除水中的悬浮物…

Ubuntu(WSL)创建用户并赋予权限

查看当前用户 创建新用户 1&#xff09;执行如下命令创建新用户 sudo adduser mysql57 // mysql57 为新用户名&#xff0c;可自定义 2&#xff09;若待创建用户已存在&#xff0c;则先删除已存在用户&#xff0c;然后创建新用户 // 删除用户名 userdel mysql57// 删除组…

lambda表达式和包装器

正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 我们在使用库里的排序算法时如果排序的是自定义类型或者库里默认的排序不能满足我们则需求&…

2.2 设计FMEA步骤二:结构分析

2.2.1 目的 设计结构分析的目的是将设计识别和分解为系统、子系统、组件和零件,以便进行技术风险分析。其主要目标包括: 可视化分析范围结构化表示:方块图、边界图、数字模型、实体零件识别设计接口、交互作用和间隙促进顾客和供应商工程团队之间的协作(接口责任)为功能分…

PyTorch官网demo解读——第一个神经网络(4)

上一篇&#xff1a;PyTorch官网demo解读——第一个神经网络&#xff08;3&#xff09;-CSDN博客 上一篇我们聊了手写数字识别神经网络的损失函数和梯度下降算法&#xff0c;这一篇我们来聊聊激活函数。 大佬说激活函数的作用是让神经网络产生非线性&#xff0c;类似人脑神经元…

Delphi6函数大全4-SysUtils.pas

Delphi6函数大全4-SysUtils.pas首部 function FormatFloat(const Format: string; Value: Extended): string; $[SysUtils.pas功能 返回浮点数类型以指定格式字符串Format转换成字符串说明 FormatFloat(,.00, 1234567890) 1,234,567,890.00参考 function …

[SSD 测试 1.3] 消费级SSD全生命周期测试

依公知及经验整理,原创保护,禁止转载。 专栏 《深入理解SSD》 <<<< 返回总目录 <<<< 构建消费级SSD全生命周期测试,开展性能测试、兼容性测试、功能测试、环境应力测试、可靠性测试、电器检测。 以忆联消费级存储实验室为例,消费级存储实验室面积…

思维链COT原理探究

要进行因果分析&#xff0c;需要把思维链中的不同元素拆解开来&#xff0c;然后通过控制变量实验&#xff0c;来研究不同元素对COT效果的影响。以下两篇论文的核心差异就在于: COT的变量拆解&#xff0c;以及控制变量的实验方式。 结合两篇论文的实验结论&#xff0c;可能导致…

Java技术栈 —— Redis的雪崩、穿透与击穿

Java技术栈 —— Redis的雪崩、穿透与击穿 〇、实验的先导条件&#xff08;NginxJmeter&#xff09;一、Redis缓存雪崩、缓存穿透、缓存击穿1.1 雪崩1.2 穿透1.3 击穿 二、Redis应用场景——高并发2.1 单机部署的高并发问题与解决&#xff08;JVM级别锁&#xff09;2.2 集群部署…

RK3568平台 Android13 GKI架构开发方式

一.GKI简介 GKI&#xff1a;Generic Kernel Image 通用内核映像。 Android13 GMS和EDLA认证的一个难点是google强制要求要支持GKI。GKI通用内核映像&#xff0c;是google为了解决内核碎片化的问题&#xff0c;而设计的通过提供统一核心内核并将SoC和板级驱动从核心内核移至可加…

29 UVM Command Line Processor (CLP)

随着设计和验证环境的复杂性增加&#xff0c;编译时间也增加了&#xff0c;这也影响了验证时间。因此&#xff0c;需要对其进行优化&#xff0c;以便在不强制重新编译的情况下考虑新的配置或参数。我们已经看到了function or task如何基于传递参数进行行为。类似地&#xff0c;…

30 UVM Adder Testbench Example

1 Adder Design 加法器设计在时钟的上升沿产生两个变量的加法。复位信号用于clear out信号。注&#xff1a;加法器可以很容易地用组合逻辑开发。引入时钟和重置&#xff0c;使其具有测试台代码中时钟和重置的样子/风格。 module adder(input clk, reset, input [7:0] in1, in…

BikeDNA(二) OSM数据的内在分析1

BikeDNA&#xff08;二&#xff09; OSM数据的内在分析1 该笔记本分析给定区域的 OSM 自行车基础设施数据的质量。 质量评估是“内在的”&#xff0c;即仅基于一个输入数据集&#xff0c;而不使用外部信息。 对于将 OSM 数据与用户提供的参考数据集进行比较的外在质量评估&…

Halcon闭运算closing

Halcon闭运算 文章目录 Halcon闭运算 闭运算的计算步骤&#xff0c;为先膨胀&#xff0c;后腐蚀。这两步操作能将看起来很接近的元素&#xff0c;如区域内部的空洞或外部孤立的点连接成一体&#xff0c;区域的外观和面积也不会有明显的改变。通俗地说&#xff0c;就是类似于“填…

金蝶云星空其他出库单,审核中/审批流中可以选择序列号设置

文章目录 其他出库单&#xff0c;审核中&#xff0c;审批流中可以选择序列号设置 其他出库单&#xff0c;审核中&#xff0c;审批流中可以选择序列号设置

2023 总结:我在上海做程序员的第八年

文章目录 生活举办了婚礼拿到上海户口输出的数据看书还不够 赚钱工作副业 专业技术开源图片分析工具 AndroidBitmapMonitor成为谷歌开发者专家学习的终极目的 健康总结历史总结 大家好&#xff0c;我是拭心。 这篇文章里&#xff0c;我将从生活、赚钱、专业技术、健康几方面总…