使用Node Exporter采集主机数据

news2024/11/23 2:04:42

安装 Node Exporter

在 Prometheus 的架构设计中,Prometheus Server 并不直接服务监控特定的目标,其主要任务负责数据的收集,存储并且对外提供数据查询支持。因此为了能够能够监控到某些东西,如主机的 CPU 使用率,我们需要使用到 Exporter。Prometheus 周期性的从 Exporter 暴露的 HTTP 服务地址(通常是/metrics)拉取监控样本数据。
这里为了能够采集到主机的运行指标如 CPU、 内存、磁盘等信息,我们可以使用 Node Exporter。
Node Exporter 同样采用 Golang 编写,并且不存在任何的第三方依赖,只需要下载,解压即可运行。可以从官网获取最新的 node exporter 版本的二进制包。

下载地址:https://prometheus.io/download/

wget https://github.com/prometheus/node_exporter/releases/download/v1.7.0/node_exporter-1.7.0.linux-amd64.tar.gz

也可以使用 docker 安装

docker run -d -p 9100:9100 prom/node-exporter

访问http://localhost:9100/可以看到页面。

初始 Node Exporter 监控指标:
访问http://localhost:9100/metrics,可以看到当前 node exporter 获取到的当前主机的所有监控数据。
每一个监控指标之前都会有一段类似于如下形式的信息:

# HELP node_cpu Seconds the cpus spent in each mode.
# TYPE node_cpu counter
node_cpu{cpu="cpu0",mode="idle"} 362812.7890625
# HELP node_load1 1m load average.
# TYPE node_load1 gauge
node_load1 3.0703125

其中 HELP 用于解释当前指标的含义,TYPE 则说明当前指标的数据类型。在上面的例子中 node_cpu 的注释表明当前指标是 cpu0 上 idle 进程占用 CPU 的总时间,CPU 占用时间是一个只增不减的度量指标,从类型中也可以看出 node_cpu 的数据类型是计数器(counter),与该指标的实际含义一致。又例如 node_load1 该指标反映了当前主机在最近一分钟以内的负载情况,系统的负载情况会随系统资源的使用而变化,因此 node_load1 反映的是当前状态,数据可能增加也可能减少,从注释中可以看出当前指标类型为仪表盘(gauge),与指标反映的实际含义一致。

除了这些以外,在当前页面中根据物理主机系统的不同,你还可能看到如下监控指标:

  • node_boot_time:系统启动时间
  • node_cpu:系统 CPU 使用量
  • nodedisk*:磁盘 IO
  • nodefilesystem*:文件系统用量
  • node_load1:系统负载
  • nodememeory*:内存使用量
  • nodenetwork*:网络带宽
  • node_time:当前系统时间
  • go_*:node exporter 中 go 相关指标
  • process_*:node exporter 自身进程相关运行指标

从 Node Exporter 收集监控数据

为了能够让 Prometheus Server 能够从当前 node exporter 获取到监控数据,这里需要修改 Prometheus 配置文件。编辑 prometheus.yml 并在 scrape_configs 节点下添加以下内容:

scrape_configs:
  - job_name: 'prometheus'
    static_configs:
      - targets: ['localhost:9090']
  # 采集node exporter监控数据
  - job_name: 'node'
    static_configs:
      - targets: ['localhost:9100']

重新启动 Prometheus Server。
访问http://localhost:9090,进入到 Prometheus Server。如果输入“up”并且点击执行按钮以后,可以看到如下结果:
图片2.png
如果 Prometheus 能够正常从 node exporter 获取数据,则会看到以下结果:

up{instance="localhost:9090",job="prometheus"} 1 
up{instance="localhost:9100",job="node"} 1

其中“1”表示正常,反之“0”则为异常。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1343871.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

3D 渲染如何帮助电商促进销售?

在线工具推荐: 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 3D 渲染图像因其高转化率而成为亚马逊卖家的最新趋势。它是电子商务平…

Linux 线程安全 (1)

文章目录 线程互斥概念互斥实际使用互斥锁的原理死锁问题说明 线程互斥概念 执行流 执行流是指操作系统对进程或线程的调度和执行顺序。它决定了程序中的指令按照何种顺序被执行。 现阶段可以粗浅的理解为,执行流决定执行哪个线程或进程的代码(或者说执行流决定了…

MyBatis标签及其应用示例

MyBatis标签及其应用示例 1. select 1.1 标签属性 id唯一的标识符parameterType传给此语句的参数的全路径名或别名如:com.xxx.xxx.demo.entity.User或userresultType语句返回值类型或别名。如果是集合List,此处填写集合的泛型T,而不是集合…

人机交互中信息数量与质量

在人机交互中,信息的数量和质量都是非常重要的因素。 信息的数量指的是交互过程中传递的信息的多少。信息的数量直接影响到交互的效率和效果,如果交互中传递的信息量太少,可能导致交互过程中的信息不足,用户无法得到想要的结果或者…

js实时监听input输入框值的变化

实习日记之通过调用common chemistry的api接口实现输入keyword查找cas号和mw。做了一个简单的html网页&#xff0c;用到了ajax技术。比较简单&#xff0c;适合刚入门的宝学习参考。代码如下&#xff1a; <!DOCTYPE html> <html lang"en"> <head>&l…

面试算法78:合并排序链表

题目 输入k个排序的链表&#xff0c;请将它们合并成一个排序的链表。 分析&#xff1a;利用最小堆选取值最小的节点 用k个指针分别指向这k个链表的头节点&#xff0c;每次从这k个节点中选取值最小的节点。然后将指向值最小的节点的指针向后移动一步&#xff0c;再比较k个指…

cleanmymac这个软件怎么样?值不值得下载

cleanmymac是我必装的mac端清理软件&#xff0c;界面简洁好看&#xff0c;完美适配mac系统&#xff0c;文件清理的速度、精度都比较优秀&#xff0c;还是比较不错的呢。cleanmymac作为一款第三方清洁应用程序&#xff0c;具有专业完整的清理功能&#xff0c;包括释放内存、一键…

Halcon阈值处理的几种分割方法threshold/auto_threshold/binary_threshold/dyn_threshold

Halcon阈值处理的几种分割方法 文章目录 Halcon阈值处理的几种分割方法1. 全局阈值2. 基于直方图的自动阈值分割方法3. 自动全局阈值分割方法4. 局部阈值分割方法5. var_threshold算子6 . char_threshold 算子7. dual_threshold算子 在场景中选择物体或特征是图像测量或识别的重…

FairyGUI-Cocos Creator官方Demo源码解读

博主在学习Cocos Creator的时候&#xff0c;发现了一款免费的UI编辑器FairyGUI。这款编辑器的能力十分强大&#xff0c;但是网上的学习资源比较少&#xff0c;坑比较多&#xff0c;主要学习方式就是阅读官方文档和练习官方Demo。这里博主进行官方Demo的解读。 从gitee上克隆项目…

《PCI Express体系结构导读》随记 —— 第I篇 第1章 PCI总线的基本知识(15)

接前一篇文章&#xff1a;《PCI Express体系结构导读》随记 —— 第I篇 第1章 PCI总线的基本知识&#xff08;14&#xff09; 1.3 PCI总线的存储器读写总线事务 1.3.4 PCI读写主存储器 前文已提到&#xff0c;由于本节内容较长&#xff0c;因此将后一部分内容放在本文中。 为…

基于Python、Keras和OpenCV的实时人脸活体检测

你在互联网上找到的大多数人脸识别算法和研究论文都遭受照片攻击。这些方法在检测和识别来自网络摄像头的图像、视频和视频流中的人脸方面非常有效。然而&#xff0c;他们无法区分现实生活中的面孔和照片上的面孔。这种无法识别人脸的现象是由于这些算法在二维帧上工作。 现在…

【JS笔记】JavaScript语法 《基础+重点》 知识内容,快速上手(二)

数组 什么是数组&#xff1f; 字面理解就是 数字的组合 其实不太准确&#xff0c;准确的来说数组是一个 数据的集合 也就是我们把一些数据放在一个盒子里面&#xff0c;按照顺序排好 [1, 2, 3, hello, true, false]这个东西就是一个数组&#xff0c;存储着一些数据的集合 …

深度学习框架Keras与Pytorch对比

对于许多科学家、工程师和开发人员来说&#xff0c;TensorFlow是他们的第一个深度学习框架。TensorFlow 1.0于2017年2月发布&#xff0c;可以说&#xff0c;它对用户不太友好。 在过去的几年里&#xff0c;两个主要的深度学习库Keras和Pytorch获得了大量关注&#xff0c;主要是…

【Java EE初阶五】wait及notify关键字

1. wait和notify的概念 所谓的wait和notify其实就是等待、通知机制&#xff1b;该机制的作用域join类似&#xff1b;由于多个线程之间是随机调度的&#xff0c;引入wait和notify就是为了能够从应用层面上&#xff0c;干预到多个不同线程代码的执行顺序&#xff0c;此处的干预&a…

C# WPF上位机开发(Web API联调)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 很多时候&#xff0c;客户需要开发的不仅仅是一个上位机系统&#xff0c;它还有其他很多配套的系统或设备&#xff0c;比如物流小车、立库、数字孪…

web前端开发html/css求职简介/个人简介小白网页设计

效果图展示&#xff1a; html界面展示&#xff1a; html/css代码&#xff1a; <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns"http://www.w3.…

Java IDEA JUnit 单元测试

JUnit是一个开源的 Java 单元测试框架&#xff0c;它使得组织和运行测试代码变得非常简单&#xff0c;利用JUnit可以轻松地编写和执行单元测试&#xff0c;并且可以清楚地看到哪些测试成功&#xff0c;哪些失败 JUnit 还提供了生成测试报告的功能&#xff0c;报告不仅包含测试…

VSCode + vite + vue3断点调试配置

没想到这个配置我搞了一上午&#xff0c;网上很多的配置方案都没有效果。总算搞定了&#xff0c;特此记录一下。 首先需要在.vscode文件夹下面创建launch.json配置文件。然后输入如下配置&#xff1a; {// 使用 IntelliSense 了解相关属性。 // 悬停以查看现有属性的描述。//…

Java Swing GUI实现ATM机(涉及网络编程聊天功能)

一、序言 1.首先这是本人大二时期的编程&#xff0c;涉及到网络编程的聊天功能&#xff0c;大佬勿喷。 二、且看展示图片 1.首先启动服务端&#xff08;启动Fuwuduan代码&#xff09;&#xff0c;也就是客服聊天窗口 提供给用户申请银行卡号&#xff0c;客服界面如下&#x…

复试 || 就业day01(2023.12.29)项目一

文章目录 前言正规方程二元一次示例正规方程 : w ( X T X ) − 1 X T y w (X^TX)^{-1}X^Ty w(XTX)−1XTy三元一次方程示例八元一次方程示例sklearn带截距的线性方程总结 前言 &#x1f4ab;你好&#xff0c;我是辰chen&#xff0c;本文旨在准备考研复试或就业 &#x1f4ab;…