回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)

news2024/11/24 13:31:44

回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)

目录

    • 回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2

基本介绍

1.回归预测 | MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图) (多指标,多图) 。出图包括迭代曲线图、预测效果图等等。
2.matlab 版本要求2020b及以上版本 程序已调试好可以直接运行(数据直接在Excel中替换)优化参数为核参数。
3.直接替换Excel数据即可用,注释清晰,适合新手小白[火]
4.附赠示例数据,直接运行main文件一键出图[灯泡]评价指标包括:R2、MAE、MSE、MAPE、RMSE等,图很多。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实ZOA-LSTM基于斑马优化算法优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);





%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1343496.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ubuntu python播放MP3,wav音频和录音

目录 一.利用pygame(略显麻烦,有时候播放不太正常)1.安装依赖库2.代码 二.利用mpg123(简洁方便,但仅争对mp3)1.安装依赖库2.代码 三.利用sox(简单方便,支持的文件格式多)…

jvm实战之-常用jvm命令的使用

各命令的使用 JMAP 1、查看内存信息,对象实例数、对象占有大小 jmap -histo 进程号>./log.txt2、查看堆的配置信息和使用情况 jmap - heap 进程号3、将堆的快照信息dump下来,使用java自带的jvisualvm.exe打开分析 jmap -dump:formatb,filedump.h…

oracle学习(5)

数据处理 SQL语言的类型: 1. 数据库中,称呼增删改查,为DML语句。(Data Manipulation Language 数据操纵语言),就是指代: insert、update、delete、select这四个操作。 2. DDL语句。(Data Definition Language 数据…

提升数据库性能的关键指南-Oracle AWR报告

文章目录 一、了解AWR报告:数据库性能的仪表盘二、生成AWR报告三、解读AWR报告的关键部分1.报告开头的系统基础信息2.ADDM发现3.负载概览(Load Profile)4.参数文件5.顶级前台等待事件6.SQL 统计信息-顶级SQL7.SGA Advisory AND PAG Advisory 一、了解AWR报告&#x…

帆软报表中定时调度中的最后一步如何增加新的处理方式

在定时调度中,到调度执行完之后,我们可能想做一些别的事情,当自带的处理方式不满足时,可以自定义自己的处理方式。 产品的处理方式一共有如下这些类型: 我们想在除了上面的处理方式之外增加自己的处理方式应该怎么做呢? 先看下效果: 涉及到两方面的改造,前端与后端。…

出海合规云安全,AWS Landing Zone解决方案建立安全着陆区

在出海的大环境中,企业数字化转型的趋势之一就是上云。然而,上云也带来了新的挑战,特别是对企业的 IT 建设和管理提出了更高的要求。为了构建一个安全合规的云上信息系统环境,满足企业中不同用户的快速增长、资源访问可控、成本可…

动态新增input输入框

实现原理,修改绑定数组的长度。 需要绑定的数组 memberList: [{userName: ,phone: ,position: }], 点击时触发修改绑定数组长度的方法 addItem() {this.memberList.push({name: , phone: , post: })}, deleteItem(item, index) {this.inputForm.memberList.splice(i…

02.Git远程仓库

一、常用的托管服务 1.gitHub 一个面向开源及私有软件项目的托管平台,只支持Git作为唯一的版本库格式进行托管。 2.码云(gitee) 是国内的一个代码托管平台,服务器在国内,所有相较于gitHub使用起来更加方便一点。 3.gitLab 是一个用于仓库管…

如何在MAC OS中的XCODE下添加 <bits/stdc++.h>

mac上使用的编译器是Clang,但是没有万能头文件bits/stdc.h\,本文介绍如何添加万能头文件 Xcode 版本:15.1 - 打开应用程序-Xcode-右键显示包内容 Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/includ…

华为无线ac双链路冷备和热备配置案例

所谓的冷备和热备,冷备就是不用vrrp和hsb协议同步ap和用户信息,主的断了等七十五秒后,备的capwap和ap连接上去。 双链路冷备不用vrrp和hsb 双链路热备份只用hsb同步ap和用户信息,不用vrrp,两个ac可以不用在同一个二层…

java设计模式实战【策略模式+观察者模式+命令模式+组合模式,混合模式在支付系统中的应用】

引言 在代码开发的世界里,理论知识的重要性毋庸置疑,但实战经验往往才是知识的真正试金石。正所谓,“读万卷书不如行万里路”,理论的学习需要通过实践来验证和深化。设计模式作为软件开发中的重要理论,其真正的价值在…

使用Vscode远程debug报错找不到Module找不到File

1..报第一个错 提示我无法导入自己写的module 如图: 解决办法: stackoverflow上说的在launch.json中加了一条 env,就解决了。 "env": { "PYTHONPATH":"/home/zt/ge-sc-master/ge-sc-master"}, 2.解决完第一个…

机器学习的一般步骤

机器学习专注于让机器从大量的数据中模拟人类思考和归纳总结的过程,获得计算模型并自动判断和推测相应的输出结果。机器学习的一般步骤可以概括为以下几个阶段: 数据收集和准备: 收集与问题相关的数据,并确保数据的质量和完整性。…

k8s的陈述式资源管理

k8s的陈述式资源管理: 命令行:kubectl命令行工具 优点:90%以上的场景都可以满足 对资源的增,删,查比较方便,对改不是很友好 缺点: 命令比较冗长,复杂,难记 声明式&…

Adobe 设计精髓:创新的用户体验 | 开源日报 No.130

adobe/react-spectrum Stars: 10.1k License: Apache-2.0 React Spectrum Libraries 是一系列的库和工具,旨在帮助开发者构建适应性强、可访问性好且稳健的用户体验。 核心优势: 提供全面的可访问性和行为支持,符合 WAI-ARIA 编写实践&…

nginx+rsyslog+kafka+clickhouse+grafana 实现nginx 网关监控

需求 我想做一个类似腾讯云网关日志最终以仪表方式呈现,比如说qps、p99、p95的请求响应时间等等 流程图 数据流转就像标题 nginx ----> rsyslog ----> kafka —> clickhouse —> grafana 部署 kafka kafka 相关部署这里不做赘述,只要创…

hyperf console 执行

一、原理描述 hyperf中,不难发现比如自定义控制器中获取参数,hyperf.php中容器获取,传入的都是接口,而不是实体类。 这是因为框架中的配置文件有设置对应抽象类的子类,框架加载的时候将其作为数组,使用的…

楼宇智慧能源消耗监测管理系统,楼宇中的能源“管家”

随着人口的增加,楼宇数据呈上涨趋势,但是楼宇智能建设在我国普及性远远不足,相比传统楼宇控制,智能楼宇控制系统对于楼宇内部的用电设备控制,能够更加的节约能源,降低成本。对于现代化楼宇而言,…

大数据学习(29)-Spark Shuffle

&&大数据学习&& 🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言📝支持一下博主哦&#x1f91…

代码质量评价及设计原则

1.评价代码质量的标准 1.1 可维护性 可维护性强的代码指的是: 在不去破坏原有的代码设计以及不引入新的BUG的前提下,能够快速的修改或者新增代码. 不易维护的代码指的是: 在添加或者修改一些功能逻辑的时候,存在极大的引入新的BUG的风险,并且需要花费的时间也很长. 代码可…