计算机视觉与自然语言处理(Open AI)

news2024/11/28 7:34:16

1.语音识别技术

语音识别是将语音转换为文本的技术, 是自然语言处理的一个分支。通过特征的提取、模式的匹配将语音信号变为文本或命令,以实现机器识别和理解语音。

按照应用场景的不同,可以大致分为三类;
• 电信级系统应用:以自动语音服务的形式用在各行业的企业自动语音服务中心,具体的场景包括电话银行、股票交易、金融产品客服、电子商务、旅游服务等;
• 嵌入式应用:以基础应用的形式集成在各类终端产品中,如机器人、手机、车载系统等;
• 特殊应用:主要为安全部门提供声纹识别应用方案,用于自动身份辨认。

主要瓶颈:
• 语音交互受背景噪音、语速等多重因素影响,不同场景识别率差别较大,实际应用仅限近距离使用;
• 语音交互成为下一个搜索引擎方式的主要阻碍是消费者习惯,多数消费者尚未形成语音使用习惯。

2.语义识别

语音识别解决的是计算机“听得见”的问题,而语义识别解决的是“听的懂”的问题,自然语言处理(NLP)表示语言能力,语言应用的模型通过建立计算机框架来实现语言模型,并根据语言模型来设计各种实用系统。

技术成熟度较低,主要瓶颈在于深度学习并非语义识别最佳解决方案。NLP现在实际的技术困难还是语义的复杂性,包含因果关系和逻辑推理的上下文等,现在解决这些问题的思路主要还是深度学习。深度学习拓展了神经网络的层次,而且大数据的积累和并行计算的增强则给这种方法奠定了基础,这也是最近机器学习非常火热的原因。因此基于大数据、并行计算的深度学习将会给NLP带来长足的进步,但是若想达到人类的这种理解层次,恐怕仅靠这种方法也很难实现。

3.计算机视觉

指用计算机来模拟人的视觉系统,实现人的视觉功能,以适应、理解外界环境和控制自身的运动。总的来讲,主要是视觉系统解决的是物体识别、物体形状和方位确认以及物体运动判断这三个问题,而计算机视觉的研究,则是专注于让机器代替人眼,解决这些问题。从技术的角度来说主要是三个过程:目标检测、目标识别、行为识别,分别解决了“去背景”、“是什么”、“干什么”的问题。

技术成熟度:计算机视觉各细分领域的成熟度相差较大。在生物特征识别领域,如人脸识别、指纹识别、瞳孔识别,技术成熟度高,工业化程度高,广泛应用于安防和考勤。在物体和场景识别方面,由于识别的物体种类繁杂,表现形态多样,技术成熟度较低。现阶段多数公司着力数据标注。静态物体的识别技术较为成熟,动态图像的图像识别难度较大。
主要瓶颈:受图片质量、光照环境的影响,现有图像识别技术较难解决图像残缺、光线过爆、过暗的图像。此外,受制于被标记数据的体量和数量,若无大量、优质的细分应用场景数据,该特定应用场景的算法迭代很难实现突破。

 语音识别:整体较为成熟,但背景噪音仍难解决。
 语义识别:由于牵扯到到背景知识的表达,上下文环境等,识别准确率并不高。目前知识图谱、迁移学习等能够发挥一部分的作用,但存在依赖人工构建等缺点,技术理论的发展仍待突破

计算机视觉:该领域的发展在深度学习理论出现后得到了大的突破,但目前仅人脸识别、OCR识别较为成熟,物体识别、场景识别仍在技术攻关中。对动态视频影像、光线遮挡问题较严重的情况下,技术仍存在瓶颈。这个领域的创业公司最多,也是创投资金最充裕的一个领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1341519.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HBase基础知识(四):HBase API

HBase还提供了API&#xff0c;我们可以通过编程的方式来进行对HBase的操作。 1. 环境准备 新建项目后在 pom.xml 中添加依赖&#xff1a; <dependencies><dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-server</artifa…

首次使用TypeScript,报错:无法重新声明块级范围变量(声明变量报错)

前几天在书写TypeScript代码时&#xff0c;出现了声明变量报错的情况&#xff0c;具体情况如下&#xff1a; let arr: number; arr 10; console.log(arr);报错如下&#xff1a; 解决方案&#xff1a; 在配置文件tsconfig.json中&#xff0c;配置如下代码&#xff1a; { &q…

STM32F407-14.3.10-表73具有有断路功能的互补通道OCx和OCxN的输出控制位-1x000-1x111(总结)

基于表73中&#xff0c;主输出使能&#xff08;MOE1&#xff09;的8种OCx与OCxN的输出状态及波形图&#xff0c;已经单独整理输出8篇文章&#xff0c;方便需要时单独回查。 主输出使能时&#xff08;MOE1&#xff09;总结如下 通过表73中可得以下结论 1、控制位1x000与1x100…

[玩转AIGC]LLaMA2之如何跑llama2.c的chat模式

前言&#xff1a;之前我们关于llama2的相关内容主要停留在gc层面&#xff0c;没介绍chat模式&#xff0c;本文将简单介绍下llama2.c的chat模式如何跑起来。训练就算了&#xff0c;没卡训练不起来的&#xff0c;但是用CPU来对别人训练好的模型进行推理还是绰绰有余的&#xff0c…

2023-12-29 服务器开发-centos-安装php8

摘要: 2023-12-29 服务器开发-centos-安装php8 centos-安装php8 必备条件 Minimal CentOS 8 / RHEL 8User with sudo rightsInternet Connection (1) 更新系统 更新系统 $ sudo dnf update $ sudo dnf upgrade 重启系统 $ sudo reboot (2) 启用 EPEL & Remi 软件库…

Pycharm引用其他文件夹的py

Pycharm引用其他文件夹的py 方式1&#xff1a;包名设置为Sources ROOT 起包名的时候&#xff0c;需要在该文件夹上&#xff1a;右键 --> Mark Directory as --> Sources ROOT 标记目录为源码目录&#xff0c;就可以了。 再引用就可以了 import common from aoeweb impo…

lv13 内核模块动态添加新功能 6

1 动态加载法 即新功能源码与内核其它源码不一起编译&#xff0c;而是独立编译成内核的插件(被称为内核模块&#xff09;文件.ko 1.1 新功能源码与Linux内核源码在同一目录结构下时 给新功能代码配置Kconfig&#xff08;模块代码与上一级相同&#xff09; 给新功能代码改写…

2023年12月28日学习记录

目录 1、今日计划学习内容2、今日学习内容文献阅读—A Data-driven Base Station Sleeping Strategy Based on Traffic Prediction0、选这篇文章的原因1、文章的主要内容和贡献2、使用的数据集3、结果及分析4、郭郭有话说 整理流量预测的代码 3、今日学习总结 1、今日计划学习内…

[枚举涂块]画家问题

画家问题 题目描述 有一个正方形的墙&#xff0c;由N*N个正方形的砖组成&#xff0c;其中一些砖是白色的&#xff0c;另外一些砖是黄色的。Bob是个画家&#xff0c;想把全部的砖都涂成黄色。但他的画笔不好使。当他用画笔涂画第(i, j)个位置的砖时&#xff0c; 位置(i-1, j)、…

【ES】Elasticsearch常见问题与解决(持续更新)

目录 Elasticsearch常见问题 1. 集群健康问题 2. 性能问题 3. 映射问题 4. 分片问题 5. 内存问题 6. 硬件问题 7. 配置问题 8. 安全问题 9. 网络问题 10. 版本不兼容 Elasticsearch日常使用小结 【Q】离线告警&#xff0c;有IP已离线 【Q】统计某个应用的某个索引…

tcp 乱序度量与丢包标记

传统 tcp 以序列号差度量乱序&#xff0c;比如 1, 2, 3, 4, 6, 7, 8, 5 这个序列的 5 延后了 3 个段&#xff0c;就称这个序列的乱序度为 3。 如果乱序度为 m&#xff0c;则序列 n, n 1 k, n 1 k r, …, n 1 k r x 中&#xff0c;只要 (n 1 k r x) - (n 1) k …

maven中dependencyManagement标签

简介 dependencyManagement正如其名&#xff0c;用于项目依赖的统一管理。 在父项目中的pom.xml文件中加入dependencyManagement标签即可完成依赖版本的声明。在声明完成后&#xff0c;子项目&#xff08;module&#xff09;中引用相同的依赖时可以不指定version标签自动引入…

音频修复和增强软件:iZotope RX 10 (Win/Mac)中文汉化版

iZotope RX 是一款专业的音频修复和增强软件&#xff0c;一直是电影和电视节目中使用的行业标准音频修复工具&#xff0c;iZotope能够帮助用户对音频进行制作、后期合成处理、混音以及对损坏的音频进行修复&#xff0c;再解锁更多功能之后还能够对电影、游戏、电视之中的音频进…

使用css实现 Typora markdown 标题自动编号

第一&#xff0c;找到主题文件夹 第二&#xff0c;复制下面代码放入 AutoNumber.css文件中 body {counter-reset: h1; }#write h1, .markdown-section h1 {counter-reset: h2; }#write h2, .markdown-section h2 {counter-reset: h3; }#write h3, .markdown-section h3 {counte…

YOLOv5改进 | 2023注意力篇 | FocusedLinearAttention聚焦线性注意力

一、本文介绍 本文给大家带来的改进机制是FLAttention&#xff08;聚焦线性注意力&#xff09;是一种用于视觉Transformer模型的注意力机制(但是其也可以用在我们的YOLO系列当中从而提高检测精度)&#xff0c;旨在提高效率和表现力。其解决了两个在传统线性注意力方法中存在的…

网络攻防中应该掌握的进阶工具udp2raw,通过raw socket给UDP包加上TCP或ICMP header,进而绕过UDP屏蔽或QoS

网络攻防中应该掌握的进阶工具udp2raw,通过raw socket给UDP包加上TCP或ICMP header,进而绕过UDP屏蔽或QoS。 udp2raw tunnel,通过raw socket给UDP包加上TCP或ICMP header,进而绕过UDP屏蔽或QoS,或在UDP不稳定的环境下提升稳定性。可以有效防止在使用kcptun或者finalspeed的…

企业级依赖管理: 深入解读 Maven BOM

一、背景 当开发者在一个大型项目中使用 Maven 进行依赖管理时&#xff0c;项目往往会包含多个模块或子项目&#xff0c;并且这些模块会共享相同的依赖项。但是&#xff0c;不同模块可能会独立地指定各自的依赖版本&#xff0c;这可能导致以下问题&#xff1a; 依赖版本不一致…

Activiti工作流框架学习笔记(二)之springboot2.0整合工作流Activiti6.0

文/朱季谦 以前在工作当中做过不少与工作流Activiti有关的工作&#xff0c;当时都是spring集成activiti5.22的项目&#xff0c;现在回过头去看&#xff0c;其实版本已经稍微老了&#xff0c;因此&#xff0c;基于先前的工作经验&#xff0c;决定用较新版本的技术来重新梳理下以…

字符串转成时间的SQL,一个多种数据库通用的函数

select date 2010-10-06 from dual; date 函数&#xff0c;此函数适用于&#xff1a; 1.MySQL数据库 2.Oracle数据库 3.达梦数据库 4.人大金仓数据库

NFC物联网构建移动智能仓储系统解决方案

仓储管理作为企业研发生产活动的重要环节&#xff0c;正朝着标准化、信息化方向发展。高新作为典型的资产密集 技术密集型企业,原料样品为代表的资产数量巨大品种繁杂&#xff0c;对仓库管理的实时性及准确性要求较高。传统的人工作业模式和管理方法逐渐难以满足仓储管理对高效…