目标检测-One Stage-YOLOv1

news2024/11/28 20:46:18

文章目录

  • 前言
  • 一、YOLOv1的网络结构和流程
  • 二、YOLOv1的损失函数
  • 三、YOLOv1的创新点
  • 总结


前言

前文目标检测-Two Stage-Mask RCNN提到了Two Stage算法的局限性:

  • 速度上并不能满足实时的要求

因此出现了新的One Stage算法簇,YOLOv1是目标检测中One Stage方法的开山之作,不同于Two Stage需要先通过RPN网络得到候选区域的方法,YOLOv1将检测建模为一个回归问题,直接在整张图的特征图(Feature Map)上进行目标的定位和分类,因此速度比当时正红的Fast R-CNN快很多。而且,也正是因为YOLOv1看的是全局的信息,把背景误判成目标的错误率比只看候选区的Fast R-CNN低很多,但整体的准确率还是Fast R-CNN高。


提示:以下是本篇文章正文内容,下面内容可供参考

一、YOLOv1的网络结构和流程

  1. 首先将输入图像划分成7 * 7的网格
  2. 使用ImageNet数据集(224大小)对前20层卷积网络进行预训练
  3. 使用PASCAL VOC数据集(448大小)对完整的网络进行对象识别和定位的训练
  4. 对于每个网格都预测2个边框(bounding box),即预测98(7 * 7 * 2)个目标窗口,输出7 * 7 * 2 * 30 的张量。

ps:最后一维为30,包含每个预测框的分类与位置信息:20个类别的概率+2个边框的置信度+2*4(2个边框的位置,每个边框4个参数:x_center, y_center, width, height)

  1. 根据上一步预测出98个目标窗口,使用非极大值抑制NMS去除冗余窗口
    在这里插入图片描述

ps:YOLOv1的最后一层采用线性激活函数,其它层都是Leaky ReLU。训练中采用了drop out和数据增强(data augmentation)来防止过拟合。

二、YOLOv1的损失函数

在这里插入图片描述
可看出由5个部分组成:(真阳样本的中心定位误差、宽高误差、confidence误差),负样本confidence误差,正样本类别误差

  • 可以看到宽高误差先取了平方根,这样可以降低大小对象对差值敏感度的差异
  • 超参数 λ c o o r d = 5 , λ n o o b j = 0.5 \lambda_{coord}=5,\lambda_{noobj}=0.5 λcoord=5λnoobj=0.5,可看出真阳样本位置误差的权重较高,负样本置信度误差权重低

三、YOLOv1的创新点

  1. 去除候选区模块,直接将目标检测任务转换成一个简单的回归问题,大大加快了检测的速度(45fps-155fps)
  2. 由于每个网络预测目标窗口时使用的是全图信息(图片的全局特征),使得false positive比例大幅降低(充分的上下文信息),precision较高

总结

尽管YOLOv1速度提升很多,但是精度较低:

  • 每个格子只能预测一个物体,对较小对象和密集型的物体检测不友好
  • 7 * 7的粗糙网格内对目标定位不够精准
  • 预训练时与实际训练时输入大小不一致,模型需要去适应这种分辨率的转换,会影响最终精度

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1341341.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何批量提取pdf文件名到excel?

如何批量提取pdf文件名到excel?在大家整理PDF文档的时候会不会遇到下面这些问题,首先PDF过多,每个PDF文件都有自己的名字,我们想要分类排放的话非常麻烦,不仅耗费时间而且带来的收益非常低,然后即使我们整理…

docker +gitee+ jenkins +maven项目 (一)

jenkins环境和插件配置 文章目录 jenkins环境和插件配置前言一、环境版本二、jenkins插件三、环境安装总结 前言 现在基本都是走自动化运维,想到用docker 来部署jenkins ,然后jenkins来部署java代码,做到了开箱即用,自动发布代码…

eBay自养号测评:提升销量与排名的安全可控之道

近年来,eBay平台吸引了大量商家入驻,许多原本在其他平台的卖家也纷纷转型至eBay。然而,许多商家在运营一段时间后发现,新账号的流量扶持期结束后,店铺流量开始下滑。面对这种情况,卖家应该采取哪些措施呢&a…

elasticsearch系列五:集群的备份与恢复

概述 前几篇咱们讲了es的语法、存储的优化、常规运维等等,今天咱们看下如何备份数据和恢复数据。 在传统的关系型数据库中我们有多种备份方式,常见有热备、冷备、全量定时增量备份、通过开发程序备份等等,其实在es中是一样的。 官方建议采用s…

YOLOv5改进 | 2023主干篇 | 华为最新VanillaNet主干替换Backbone实现大幅度长点

一、本文介绍 本文给大家来的改进机制是华为最新VanillaNet网络,其是今年最新推出的主干网络,VanillaNet是一种注重极简主义和效率的神经网络架构。它的设计简单,层数较少,避免了像深度架构和自注意力这样的复杂操作(需要注意的是…

用html,js和layui写一个简单的点击打怪小游戏

介绍&#xff1a; 一个简单的打怪小游戏&#xff0c;点击开始游戏后&#xff0c;出现攻击按钮&#xff0c;击败怪物后可以选择继续下一关和结束游戏。 继续下一个怪兽的血量会增加5点&#xff0c;攻击按钮会随机变色。 效果图&#xff1a; html代码&#xff1a; <!DOCTYPE…

2702 高级打字机

因为Undo操作只能撤销Type操作&#xff0c;所以Undo x 实际上就是删除文章末尾x个字母。用一个栈即可解决&#xff08;每个字母最多进出一次&#xff09;。 这种情况下只需要设计一个合理的数据结构依次执行操作即可。 版本树&#xff1a;Undo x撤销最近的x次修改操作&#xf…

HCIA-Datacom题库(自己整理分类的)——OSPF协议多选

ospf的hello报文功能是 邻居发现 同步路由器的LSDB 更新LSA信息 维持邻居关系 下列关于OSPF区域描述正确的是 在配置OSPF区域正确必须给路由器的loopback接配置IP地址 所有的网络都应在区域0中宣告 骨干区域的编号不能为2 区域的编号范围是从0.0.0.0到255.255.255.255…

《深入理解Java虚拟机(第三版)》读书笔记:Java内存区域与内存溢出异常、垃圾收集器与内存分配策略

下文是阅读《深入理解Java虚拟机&#xff08;第3版&#xff09;》这本书的读书笔记&#xff0c;如有侵权&#xff0c;请联系删除。 文章目录 第2章 Java内存区域与内存溢出异常2.2 运行时数据区域2.3 HotSpot虚拟机对象探秘 第3章 垃圾收集器与内存分配策略3.2 对象已死&…

应用在网络摄像机领域中的国产音频ADC芯片

IPC&#xff1a;其实叫“网络摄像机”&#xff0c;是IP Camera的简称。它是在前一代模拟摄像机的基础上&#xff0c;集成了编码模块后的摄像机。它和模拟摄像机的区别&#xff0c;就是在新增的“编码模块”上。模拟摄像机&#xff0c;顾名思义&#xff0c;输出的是模拟视频信号…

Adobe Premier及PrElements各版本安装指南

下载链接 https://pan.baidu.com/s/1FI_Zk4OsyRtx8AiMzgU57w?pwd0531 #2024版 1.鼠标右击【Pr2024(64bit)】压缩包&#xff08;win11及以上系统需先点击“显示更多选项”&#xff09;【解压到 Pr2024(64bit)】。 2.打开解压后的文件夹&#xff0c;鼠标右击【Setup】选择【以…

单片机数据发送程序

#include<reg51.h> //包含单片机寄存器的头文件 /***************************************************** 函数功能&#xff1a;向PC发送一个字节数据 ***************************************************/ void Send(unsigned char dat) { SBUFdat; whil…

MFC随对话框大小改变同时改变控件大小

先看一下效果; 初始; 窗口变大,控件也变大; 二个也可以; 窗口变大,控件变大; 默认生成的对话框没有WM_SIZE消息的处理程序;打开类向导,选中WM_SIZE消息,对CxxxDlg类添加该消息的处理程序;默认生成的函数名是OnSize; 添加了以后代码中会有三处变化; 在对话框类的…

使用rsync构建镜像网站

实验环境 某公司在深圳、北京两地各放置了一台网站服务器&#xff0c;分别应对南北大区内不断增长的客户访问需求&#xff0c;两台服务器的网站文档必须保持一致&#xff0c;如图12.3所示&#xff0c;同步链路已通过VPN专用线路实现。 需求描述 > 服务器 A&#xff08;北京…

每日一题:LeetCode-LCR 179. 查找总价格为目标值的两个商品

每日一题系列&#xff08;day 16&#xff09; 前言&#xff1a; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f308; &#x1f50e…

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK获取相机当前实时帧率(C#)

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK使用UserSet功能保存和载入相机的各类参数&#xff08;C#&#xff09; Baumer工业相机Baumer工业相机的帧率的技术背景Baumer工业相机的帧率获取方式CameraExplorer如何查看相机帧率信息在NEOAPI SDK里通过函数获取相机帧率 Baume…

连接GaussDB(DWS)报错:Invalid or unsupported by client SCRAM mechanisms

用postgres方式连接GaussDB(DWS)报错&#xff1a;Invalid or unsupported by client SCRAM mechanisms 报错内容 [2023-12-27 21:43:35] Invalid or unsupported by client SCRAM mechanisms org.postgresql.util.PSQLException: Invalid or unsupported by client SCRAM mec…

算法学习系列(十四):并查集

目录 引言一、并查集概念二、并查集模板三、例题1.合并集合2.连通块中点的数量 引言 这个并查集以代码短小并且精悍的特点&#xff0c;在算法竞赛和面试中特别容易出&#xff0c;对于面试而言&#xff0c;肯定不会让你去写一两百行的代码&#xff0c;一般出的都是那种比较短的…

table表格中使用el-popover 无效问题解决

实例只针对单个的按钮管用在表格里每一列都有el-popover相当于是v-for遍历了 所以我们在触发按钮的时候并不是单个的触发某一个 主要执行 代码 <el-popover placement"left" :ref"popover-${scope.$index}"> 动态绑定了ref 关闭弹窗 执行deltask…

基于Wenet长音频分割降噪识别

Wenet是一个流行的语音处理工具&#xff0c;它专注于长音频的处理&#xff0c;具备分割、降噪和识别功能。它的长音频分割降噪识别功能允许对长时间录制的音频进行分段处理&#xff0c;首先对音频进行分割&#xff0c;将其分解成更小的段落或语音片段。接着进行降噪处理&#x…