基于Wenet长音频分割降噪识别

news2025/1/12 13:27:12

Wenet是一个流行的语音处理工具,它专注于长音频的处理,具备分割、降噪和识别功能。它的长音频分割降噪识别功能允许对长时间录制的音频进行分段处理,首先对音频进行分割,将其分解成更小的段落或语音片段。接着进行降噪处理,消除可能存在的噪音、杂音或干扰,提高语音质量和清晰度。最后,Wenet利用先进的语音识别技术对经过处理的音频段落进行识别,将其转换为文字或语音内容,从而实现对长音频内容的准确识别和转录。这种功能可以应用于许多领域,如语音识别、语音转文字、语音翻译以及音频内容分析等,为长音频数据的处理提供了高效而准确的解决方案。

支持上传(WAV、MP3、M4A、FLAC、AAC)

体验一下
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

import streamlit as st
import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from pydub import AudioSegment
from noisereduce import reduce_noise
import wenet
import base64
import os
import numpy as np

# 载入模型
chs_model = wenet.load_model('chinese')
en_model = wenet.load_model('english')


# 执行语音识别的函数
def recognition(audio, lang='CN'):
    if audio is None:
        return "输入错误!请上传音频文件!"

    if lang == 'CN':
        ans = chs_model.transcribe(audio)
    elif lang == 'EN':
        ans = en_model.transcribe(audio)
    else:
        return "错误!请选择语言!"

    if ans is None:
        return "错误!没有文本输出!请重试!"

    txt = ans['text']
    return txt
    
def reduce_noise_segmented(input_file,chunk_duration_ms,frame_rate):
    try:
        audio = AudioSegment.from_file(input_file,format=input_file.name.split(".")[-1])
        # 将双声道音频转换为单声道
        audio = audio.set_channels(1)
        # 压缩音频的帧率为 16000
        audio = audio.set_frame_rate(frame_rate)
        duration = len(audio)

        # 分段处理音频
        chunked_audio = []
        start = 0

        while start < duration:
            end = min(start + chunk_duration_ms, duration)
            chunk = audio[start:end]
            chunked_audio.append(chunk)
            start = end
        return chunked_audio
    except Exception as e:
        st.error(f"发生错误:{str(e)}")
        return None


def extract_keywords(result):
    word_list = jieba.lcut(result)
    return word_list

def get_base64_link(file_path, link_text):
    with open(file_path, "rb") as file:
        audio_content = file.read()
        encoded = base64.b64encode(audio_content).decode('utf-8')
    href = f'<a href="data:audio/wav;base64,{encoded}" download="processed_audio.wav">{link_text}</a>'
    return href


def main():
    st.title("语音识别与词云生成")
    uploaded_file = st.file_uploader("上传音乐文件", type=["wav","mp3","m4a","flac","aac"])
    if uploaded_file:
        st.audio(uploaded_file, format='audio/wav')
    segment_duration = st.slider("分段处理时长(毫秒)", min_value=1000, max_value=10000, value=5000, step=1000)
    frame_rate = st.slider("压缩帧率", min_value=8000, max_value=48000, value=16000, step=1000)
    language_choice = st.selectbox("选择语言", ('中文', '英文'))
    bu=st.button("识别语音")
    if bu:
        if uploaded_file:
            st.success("正在识别中,请稍等...")
            output_audio_path = os.path.basename(uploaded_file.name)
            chunked_audio = reduce_noise_segmented(uploaded_file,  segment_duration, frame_rate)
            # 计算总的音频段数
            total_chunks = len(chunked_audio)
            if total_chunks>0:
                # 创建进度条
                progress_bar = st.progress(0)
                # 对每个音频段进行降噪并合并
                reduced_noise_chunks = []
                result_array = []
                for i, chunk in enumerate(chunked_audio):
                    audio_array = chunk.get_array_of_samples()
                    reduced_noise = reduce_noise(np.array(audio_array), chunk.frame_rate)
                    reduced_chunk = AudioSegment(
                        reduced_noise.tobytes(),
                        frame_rate=chunk.frame_rate,
                        sample_width=chunk.sample_width,
                        channels=chunk.channels
                    )
                    reduced_noise_chunks.append(reduced_chunk)
                    
                    language=""
                    if language_choice=='中文':
                        language="CN"
                    else:
                        language="EN"
                    path="第"+str(i+1)+"段音频.wav"
                    reduced_chunk.export(path,format="wav")
                    while os.path.exists(path):
                        result = recognition(path, language)
                        if result:
                            st.write(f"第{i+1}段音频识别结果:" + result)
                            result_array.append(result)
                        break
                    # 更新进度条的值
                    progress = int((i + 1) / total_chunks * 100)
                    progress_bar.progress(progress)
                st.write("识别的结果为:","".join(result_array))
                keywords = extract_keywords("".join(result_array))
                st.write("提取的关键词:", keywords)
                text=" ".join(keywords)
                wc = WordCloud(font_path="SimSun.ttf",collocations=False, width=800, height=400, margin=2, background_color='white').generate(text.lower())
                st.image(wc.to_array(), caption='词云')


                # 合并降噪后的音频段
                reduced_audio = reduced_noise_chunks[0]
                
                for i in range(1, len(reduced_noise_chunks)):
                    reduced_audio += reduced_noise_chunks[i]
                # 导出处理后的音频文件
                reduced_audio.export(output_audio_path,format="wav")
                while os.path.exists(output_audio_path):
                        # 提供处理后音频的下载链接
                    st.markdown(get_base64_link(output_audio_path, '下载降噪音频'), unsafe_allow_html=True)    
                    break
        else:
            st.warning("请上传文件")


if __name__ == "__main__":
    main()

依赖

wenet @ git+https://github.com/wenet-e2e/wenet
streamlit
wordcloud
pydub
jieba
noisereduce
numpy==1.23.5

服务器部署

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1341315.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开源轻量级分布式文件系统FastDFS本地部署并实现远程访问服务器

文章目录 前言1. 本地搭建FastDFS文件系统1.1 环境安装1.2 安装libfastcommon1.3 安装FastDFS1.4 配置Tracker1.5 配置Storage1.6 测试上传下载1.7 与Nginx整合1.8 安装Nginx1.9 配置Nginx 2. 局域网测试访问FastDFS3. 安装cpolar内网穿透4. 配置公网访问地址5. 固定公网地址5.…

【力扣题解】P94-二叉树的中序遍历-Java题解

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【力扣题解】 文章目录 【力扣题解】P94-二叉树的中序遍历-Java题解&#x1f30f;题目描述&#x1f4a1;题解&#x1f30f…

微软发布安卓版Copilot,可免费使用GPT-4、DALL-E 3

12月27日&#xff0c;微软的Copilot助手&#xff0c;可在谷歌应用商店下载。目前&#xff0c;只有安卓版&#xff0c;ios还无法使用。 Copilot是一款类ChatGPT助手支持中文&#xff0c;可生成文本/代码/图片、分析图片、总结内容等&#xff0c;二者的功能几乎没太大差别。 值…

华为鸿蒙应用--登录页:网络请求、自定义Loading、MD5密码加密、emitter订阅状态变化、持久化登录状态、隐藏软键盘-ArkTs

HarmonyOS系列 华为鸿蒙应用--底部导航栏Tabs&#xff08;自适应手机和平板&#xff09;-ArkTs_华为鸿蒙应用 csdn 底部导航栏-CSDN博客 华为鸿蒙应用--欢迎页SplashPage倒计时跳过&#xff08;自适应手机和平板&#xff09;-ArkTs_app.media.ic_splash_page_background-CSDN…

云手机引领社交平台运营新潮流

在网络高度发展的今天&#xff0c;社交平台已经成为企业宣传推广的关键渠道之一。传统的社交运营方式已经无法满足效率的要求&#xff0c;云手机因而开始引领社交平台运营的新潮流。本文将深入探讨云手机如何重新定义社交平台运营&#xff0c;为用户和企业带来更为便捷、智能的…

GoLang学习之路,对Elasticsearch的使用,一文足以(包括泛型使用思想)(二)

书写上回&#xff0c;上回讲到&#xff0c;Elasticsearch的使用前提即&#xff1a;语法&#xff0c;表结构&#xff0c;使用类型结构等。要学这个必须要看前面这个&#xff1a;GoLang学习之路&#xff0c;对Elasticsearch的使用&#xff0c;一文足以&#xff08;包括泛型使用思…

腾讯云服务器和轻量服务器选哪个好(各自的优势区别)

腾讯云轻量服务器和云服务器CVM该怎么选&#xff1f;不差钱选云服务器CVM&#xff0c;追求性价比选择轻量应用服务器&#xff0c;轻量真优惠呀&#xff0c;活动 https://curl.qcloud.com/oRMoSucP 轻量应用服务器2核2G3M价格62元一年、2核2G4M价格118元一年&#xff0c;540元三…

2023.12.27 关于 Redis 数据类型 List 常用命令

目录 List 类型基本概念 List 类型特点 List 操作命令 LPUSH LPUSHX RPUSH RPUSHX LRANGE LPOP RPOP LINDEX LINSERT LREM LTRIM LSET 阻塞版本的命令 阻塞版本 和 非阻塞版本的区别 BLPOP & BRPOP List 类型基本概念 Redis 中的列表&#xff08;list&am…

适用于各种危险区域的火焰识别摄像机,实时监测、火灾预防、安全监控,为安全保驾护航

火灾是一种极具破坏力的灾难&#xff0c;对人们的生命和财产造成了严重的威胁。为了更好地预防和防范火灾&#xff0c;火焰识别摄像机作为一种先进的监控设备&#xff0c;正逐渐受到人们的重视和应用。本文将介绍火焰识别摄像机在安全监控和火灾预防方面的全面应用方案。 一、火…

django之drf框架(排序、过滤、分页、异常处理)

排序 排序的快速使用 1.必须是继承GenericAPIView及其子类才能是用排序 导入OrderingFilter类&#xff0c;from rest_framework.filters import OrderingFilter 2.在类中配置类属性 filter_backends[OrderingFilter] 3.类中写属性 ordering_fields [price,id] # 必须是表的…

华为云CCE-集群内访问-根据ip访问同个pod

华为云CCE-集群内访问-根据ip访问同个pod 问题描述&#xff1a;架构如下&#xff1a;解决方法&#xff1a; 问题描述&#xff1a; 使用service集群内访问时&#xff0c;由于启用了两个pod&#xff0c;导致请求轮询在两个pod之间&#xff0c;无法返回正确的结果。 架构如下&am…

Appium+python自动化(七)- 初识琵琶女Appium(千呼万唤始出来,犹抱琵琶半遮面)- 上(超详解)

简介 “千呼万唤始出来&#xff0c;犹抱琵琶半遮面”&#xff0c;经过前边的各项准备工作&#xff0c;终于才把appium这位琵琶女请出来。那么下边就由宏哥给各位看官、小伙伴们和童鞋们来引荐这位美女&#xff08;帅哥&#xff09;。这一篇主要是对前边的内容做一个小小的总结&…

功能测试知识超详细总结

一、测试项目启动与研读需求文档 &#xff08;一&#xff09; 组建测试团队 1、测试团队中的角色 2、测试团队的基本责任 尽早地发现软件程序、系统或产品中所有的问题。督促和协助开发人员尽快地解决程序中的缺陷。帮助项目管理人员制定合理的开发和测试计划。对缺陷进行跟…

远程桌面的3389端口如何修改

远程桌面是windows的一个功能组件&#xff0c;通过这个组件可以远程控制某台电脑的电脑桌面&#xff0c;使用过windows远程桌面的人都清楚&#xff0c;大家都知道3389是远程桌面的默认端口号&#xff0c;如果将这个端口在路由器中映射出去&#xff0c;将极大的增加服务器的风险…

.NET Core NPOI导出复杂Excel

一、引入NPOI NuGet&#xff1a; NPOI GitHub源码地址&#xff1a; GitHub - tonyqus/npoi: a .NET library that can read/write Office formats without Microsoft Office installed. No COM, no interop. 版本说明&#xff1a; NPOI 2.4.1 &#xff08;注意不同版本可能使用…

elasticsearch-hadoop.jar 6.8版本编译异常

## 背景 重新编译 elasticsearch-hadoop 包&#xff1b; GitHub - elastic/elasticsearch-hadoop at 6.8 编译 7.17 版本时很正常&#xff0c;注意设置下环境变量就好&#xff0c;JAVA8_HOME/.... 编译 6.8 版本时&#xff08;要求jdk8 / jdk9&#xff09;&#xff0c;出现…

经典目标检测YOLO系列(一)YOLOV1的复现(1)总体架构

经典目标检测YOLO系列(一)实现YOLOV1网络(1)总体架构 实现原版的YOLOv1并没有多大的意义&#xff0c;因此&#xff0c;根据《YOLO目标检测》(ISBN:9787115627094)一书&#xff0c;在不脱离YOLOv1的大部分核心理念的前提下&#xff0c;重构一款较新的YOLOv1检测器&#xff0c;来…

毕业/课程设计——基于STM32的智能灯光控制系统(物联网、智能家居、手机APP控制、语音控制)

文章首先介绍本系统所包含的功能&#xff0c;主要包含六方面功能&#xff0c;之后逐步分享开发过程&#xff0c;其流程如下&#xff1a;点亮灯带&#xff08;三极管&#xff09;→调节灯光亮度&#xff08;PWM&#xff09;→为系统添加远程控制功能→为系统添加语音识别功能→添…

消防数据监测可视化大屏:守护城市安全的智慧之眼

在数字化时代&#xff0c;数据已经成为决策的关键。特别是在消防领域&#xff0c;快速、准确的数据分析对于及时应对火情、挽救生命财产具有不可估量的价值。为此&#xff0c;消防数据监测可视化大屏应运而生&#xff0c;成为城市安全的守护者。 一、什么是消防数据监测可视化大…

云轴科技海通期货 | 一云多芯信创云平台方案入选上海金融科技优秀解决方案

近日&#xff0c;在上海金融科技产业联盟主办的第五届上海金融科技国际论坛上&#xff0c;上海市地方金融监督管理局、中国人民银行上海总部共同发布了2023年度上海金融科技优秀应用场景及解决方案入选名单&#xff0c;其中云轴科技ZStack联合海通期货申报的“一云多芯信创云平…