scikit-learn文档中的数据生成器

news2025/1/21 16:31:45

目录

1. make_classification:

2. make_regression:

3. make_blobs:

4. make_moons:

5.make_circles 

6. make_sparse_coded_signal:


1. make_classification:

这是一个用于生成复杂二维数据的函数,通常用于可视化分类器的学习过程或者测试机器学习算法的性能。

from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000, n_features=20, n_classes=3)

make_classification的主要参数包括:

  • n_samples:生成的样本数。
  • n_features:每个样本的特征数。这个参数决定了生成的数据集的维度。
  • n_informative:具有信息量的特征的数量。这个参数决定了特征集中的特征有多少是有助于分类的。
  • n_redundant:冗余特征的数量。这个参数决定了特征集中的特征有多少是重复或者没有信息的。
  • random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification

X, Y = make_classification(n_samples=100, n_classes=4, n_clusters_per_class=1)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)

plt.show()

 

可以看出它生成的各类数据交织在一起,很难做线性的分类。

2. make_regression:

生成一个随机的回归问题数据集,可以设置特征数量、噪声等级等。示例:

from sklearn.datasets import make_regression

X, y = make_regression(n_samples=100, n_features=2)

make_regression的主要参数包括:

  • n_samples:生成的样本数。
  • n_features:每个样本的特征数。通常为一个较小的值,表示我们生成的是一维数据。
  • noise:噪音的大小。它为数据添加一些随机噪声,以使结果更接近现实情况。
from sklearn.datasets import make_regression

fig, ax = plt.subplots(1, 3)
fig.set_size_inches(9, 3)

X, y = make_regression(n_samples=100, n_features=1, noise=20)
ax[0].scatter(X[:, 0], y, marker="o")
ax[0].set_title("noise=20")

X, y = make_regression(n_samples=100, n_features=1, noise=10)
ax[1].scatter(X[:, 0], y, marker="o")
ax[1].set_title("noise=10")

X, y = make_regression(n_samples=100, n_features=1, noise=1)
ax[2].scatter(X[:, 0], y, marker="o")
ax[2].set_title("noise=1")

plt.show()

 

3. make_blobs:

生成一组聚类问题的数据集,可以设置聚类数量、中心点数量、特征数量等。示例:

from sklearn.datasets import make_blobs

X, y = make_blobs(n_samples=300, centers=4, n_features=2)

make_blobs的主要参数包括:

  • n_samples:生成的样本数。
  • n_features:每个样本的特征数。通常为2,表示我们生成的是二维数据。
  • centers:聚类的数量。即生成的样本会被分为多少类。
  • cluster_std:每个聚类的标准差。这决定了聚类的形状和大小。
  • shuffle:是否在生成数据后打乱样本。
  • random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

X, Y = make_blobs(n_samples=1000, centers=5)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)

plt.show()

 

4. make_moons:

和函数名称所表达的一样,它是一个用于生成形状类似于月牙的数据集的函数,通常用于可视化分类器的学习过程或者测试机器学习算法的性能。

from sklearn.datasets import make_moons

X2, y2 = make_moons(n_samples=1000, noise=0.1)

make_moons的主要参数包括:

  • n_samples:生成的样本数。
  • noise:在数据集中添加的噪声的标准差。这个参数决定了月牙的噪声程度。
  • random_state:随机数生成器的种子。这确保了每次运行代码时生成的数据集都是一样的。
from sklearn.datasets import make_moons

fig, ax = plt.subplots(1, 3)
fig.set_size_inches(9, 3)

X, Y = make_moons(noise=0.01, n_samples=1000)
ax[0].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[0].set_title("noise=0.01")

X, Y = make_moons(noise=0.05, n_samples=1000)
ax[1].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[1].set_title("noise=0.05")

X, Y = make_moons(noise=0.5, n_samples=1000)
ax[2].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[2].set_title("noise=0.5")

plt.show()

 

 noise越小,数据的分类越明显。

5.make_circles 

from sklearn.datasets import make_circles

X1, y1 = make_circles(n_samples=1000, noise=0.05)

参数和上面一样

from sklearn.datasets import make_circles

fig, ax = plt.subplots(1, 3)
fig.set_size_inches(9, 3)

X, Y = make_circles(noise=0.01, n_samples=1000)
ax[0].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[0].set_title("noise=0.01")

X, Y = make_circles(noise=0.05, n_samples=1000)
ax[1].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[1].set_title("noise=0.05")

X, Y = make_circles(noise=0.5, n_samples=1000)
ax[2].scatter(X[:, 0], X[:, 1], marker="o", c=Y, s=25)
ax[2].set_title("noise=0.5")

plt.show()

 

6. make_sparse_coded_signal:

生成一个稀疏编码信号数据集,用于稀疏信号恢复问题。示例:

from sklearn.datasets import make_sparse_coded_signal

X, y, w = make_sparse_coded_signal(n_samples=100, n_components=20)

 make_sparse_coded_signal的主要参数包括:

  • n_samples(int):生成的样本数量。默认值为 100。

  • n_components(int):生成的信号的原子数量(即特征数)。默认值为 10。

  • n_features(int):样本的特征数。默认值为 100。

  • n_nonzero_coefs(int):每个样本中非零系数的数量。默认值为 10。

  • random_state(int或RandomState实例,可选):用于随机数生成器的种子。默认值为 None。

  • normalize_dictionary(boolean):是否对生成的字典进行归一化处理。默认值为 True。

该函数返回三个值:

  • X:生成的稀疏信号数据集,包含了 n_samples 个样本和 n_features 个特征。

  • y:样本的目标值或标签。

  • dictionary:用于生成信号的字典或基向量。

from sklearn.datasets import make_sparse_coded_signal
import matplotlib.pyplot as plt

X, y, dictionary = make_sparse_coded_signal(n_samples=100, n_components=20, n_features=100, n_nonzero_coefs=5, random_state=42)

plt.scatter(X[:, 0], X[:, 1], marker="o", c=X.sum(axis=1), cmap='viridis', s=25)  # 使用样本特征值的和来作为颜色的映射
plt.colorbar()  # 添加颜色条
plt.show()

 

参考【scikit-learn基础】--『数据加载』之样本生成器 - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1339533.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

<JavaEE> TCP 的通信机制(四) -- 流量控制 和 拥塞控制

目录 TCP的通信机制的核心特性 五、流量控制 1)什么是“流量控制”? 2)如何做到“流量控制”? 3)“流量控制”的作用 六、拥塞控制 1)什么是“拥塞控制”? 2)如何做到“拥塞…

http——https实现指南

第一部分:HTTPS安全证书简介 什么是HTTPS安全证书? 在网络通信中,HTTPS安全证书是一种由可信任的证书颁发机构(CA)签发的数字证书,用于保障网站与用户之间的数据传输安全。通过加密和身份验证&#xff0c…

Elasticsearch 查询命令执行时,如何通过词项索引、词项字典、倒排表定位文档逻辑介绍

这里不涉及到源码,只是根据网上的一些文章总结一下,目前不需要细究,只需要知道大概就好,除非你的工作是二次开发ES 一、​Term Index(词项索引)1、FSM(Finite State Machine)有限状态机2、FSA(F…

【智慧门店】东胜物联蓝牙网关助力解决方案商,推动汽车后市场企业智能化升级

截至2023年9月底,我国汽车保有量达3.3亿辆,后市场前景广阔。 随着人工智能、5G、物联网等新技术的普及,汽车后市场企业希望向智能化迈进,借助新兴科技的力量提升汽车维修、车辆保养等服务质量,满足消费者日益增长的需…

python使用openpyxl操作excel

文章目录 前题读取已有excel创建一个excel工作簿对象创建excel工作簿中的工作表获取工作表第一种:.active 方法第二种:通过工作表名获取指定工作表​​​​​​第三种:.get_sheet_name() 修改工作表的名称数据操作写入数据按单元格写入通过指…

在人工智能和机器学习的影响下,代理服务器正在不断演变

代理服务器是充当客户端(例如用户的智能手机)和目标服务器(例如网站或应用程序)之间的网关的中介。在互联网的早期,代理服务器主要用于缓存网络内容。然而,随着互联网的扩展,他们的角色也随之扩…

网络舆论传播分析:自然语言处理与图分析相融合

源自:《信息安全与通信保密》 作者:徐明 魏国富 殷钱安 优化识别能力和溯源能力 在网络信息技术快速发展的当下,做好网络舆论分析是确保网络舆论信息健康稳定传播的基本前提。 介 绍 图 1 自然语言处理与图分析相结合的模型思路 方 法…

Postman使用

Postman使用 Pre-request Script 参考: Scripting in Postman 可以请求、集合或文件夹中添加Pre-request Script,在请求运行之前执行JavaScript 如设置变量值、参数、Header和正文数据,也可以使用Pre-request Script来调试代码&#xff0…

JS调用栈:为何会栈溢出

JS调用栈:为何会栈溢出 JS调用栈什么是函数调用什么是栈在开发中利用调用栈栈溢出 JS调用栈 JavaScript 经常会出现一个函数中调用另外一个函数的情况,调用栈就是用来管理函数调用关系的一种数据结构,首先你要先弄明白函数调用和栈结构 什么…

gin框架使用系列之三——获取表单数据

系列目录 《gin框架使用系列之一——快速启动和url分组》《gin框架使用系列之二——uri占位符和占位符变量的获取》 一、获取get参数 get请求的参数是直接加在url后面的,在gin中获取get请求的参数主要用Query()和DefaultQuery()两个方法,示例代码如下…

c语言-打印某种图案练习题

目录 前言一、题目一二、题目二总结 前言 本篇文章叙述c语言中打印某种图案的练习题,以便加深对c语言的运用和理解。 一、题目一 题目分析: 行与行之间的关系:第一行不进行空格,从第二行开始空一个空格,后面的空格式逐…

启封涂料行业ERP需求分析和方案分享

涂料制造业是一个庞大而繁荣的行业 它广泛用于建筑、汽车、电子、基础设施和消费品。涂料行业生产不同的涂料,如装饰涂料、工业涂料、汽车涂料和防护涂料。除此之外,对涂料出口的需求不断增长,这增加了增长和扩张的机会。近年来,…

【转】26个开源免费又好用的SSH客户端工具

概要 工欲善其事、必先利其器,每天都需要通过SSH工具远程登录服务器,那么使用一款高效的连接工具就很有必要。 安全外壳协议(Secure Shell,简称SSH)是一种在不安全网络上用于安全远程登录和其他安全网络服务的协议。…

解决阿里云远程连接yum无法安装问题(Ubuntu 22.04)

解决阿里云远程连接yum无法安装问题(Ubuntu 22.04) 第一步 进入阿里云远程连接后,尝试安装宝塔面包第二步:尝试更新软件包等一些列操作第三步:完成上述操作之后,尝试安装yum第四步:尝试更换清华…

2024 年软件工程将如何发展

软件开发目前正在经历一场深刻的变革,其特点是先进自动化的悄然但显着的激增。这一即将发生的转变有望以前所未有的规模简化高质量应用程序的创建和部署。 它不是单一技术引领这一演变,而是创新的融合。从人工智能(AI) 和数字孪生技术,到植根…

“2023年的技术发展与个人成长:回顾与展望“

文章目录 每日一句正能量前言工作生活未来展望后记 每日一句正能量 凡事顺其自然,遇事处于泰然,得意之时淡然,失意之时坦然,艰辛曲折必然,历尽沧桑悟然。 前言 在这快速发展的信息时代,技术的进步和创新不…

设计模式-过滤器模式

设计模式专栏 模式介绍模式特点应用场景Java中的过滤器介绍代码示例Java实现过滤器模式Python实现过滤器模式 过滤器模式在spring中的应用 模式介绍 过滤器模式是一种设计模式,它允许开发人员使用不同的标准来过滤一组对象。这种模式是通过运算逻辑以解耦的方式将它…

MySQL常用命令合集(Mac版)

mysql信息 MySQL位置 which mysql查看版本 mysql --version启动与关闭 使用mysql.server启用脚本来执行,默认在/usr/local/mysql/support-files这个目录中。 启动 sudo /usr/local/mysql/support-files/mysql.server start关闭 sudo /usr/local/mysql/suppor…

JMeter逻辑控制器之ForEach控制器

1. 背景 前段时间在对某项目进行测试,存在一个需要遍历所有组织机构后给每个组织下新增部门的场景,其实也可以通过在数据库中直接添加数据这种方式来实现,但是有点风险,可能会生成脏数据,后期也不好排查,最…

音视频学习(二十二)——rtmp发流(tcp方式)

前言 本文主要介绍自研的RtmpStreamSender.dll,rtmp库提供接口接收裸流数据,支持将裸流数据封装为flv格式并通过rtmp协议发流。 关于rtmp协议基础介绍可查看:https://blog.csdn.net/www_dong/article/details/131026072 关于rtmp收流介绍可…