【Hive_05】企业调优1(资源配置、explain、join优化)

news2025/1/24 2:15:03

  • 1、 计算资源配置
    • 1.1 Yarn资源配置
    • 1.2 MapReduce资源配置
  • 2、 Explain查看执行计划(重点)
    • 2.1 Explain执行计划概述
    • 2.2 基本语法
    • 2.3 案例实操
  • 3、分组聚合优化
    • 3.1 优化说明
      • (1)map-side 聚合相关的参数
    • 3.2 优化案例
  • 4、join优化
    • 4.1 Join算法概述
      • (1)Common Join
      • (2)Map Join
      • (3)Bucket Map Join
      • (4)Sort Merge Bucket Map Join
    • 4.2 使用说明
      • (1)map join
      • (2)map join案例
      • (3)Bucket Map Join
      • (4)Bucket Map Join案例
      • (5) Sort Merge Bucket Map Join

  • 关于调优,重要的是理解每一个优化手段的思路。理解优化需要配置的每个参数的实际作用。

1、 计算资源配置

计算环境为Hive on MR。计算资源的调整主要包括Yarn和MR。

1.1 Yarn资源配置

1)Yarn配置说明

需要调整的Yarn参数均与CPU、内存等资源有关,核心配置参数如下

(1)yarn.nodemanager.resource.memory-mb

该参数的含义是,一个NodeManager节点分配给Container使用的内存。该参数的配置,取决于NodeManager所在节点的总内存容量和该节点运行的其他服务的数量。
考虑上述因素,此处可将该参数设置为64G,如下:

<property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>65536</value>
</property>
  • 该参数默认使用8G内存去跑任务。
  • 需要手动调整,一般给到总内存的1/2或者2/3。

(2)yarn.nodemanager.resource.cpu-vcores

该参数的含义是,一个NodeManager节点分配给Container使用的CPU核数。该参数的配置,同样取决于NodeManager所在节点的总CPU核数和该节点运行的其他服务。
考虑上述因素,此处可将该参数设置为16。

<property>
    <name>yarn.nodemanager.resource.cpu-vcores</name>
    <value>16</value>
</property>

(3)yarn.scheduler.maximum-allocation-mb

该参数的含义是,单个Container能够使用的最大内存。推荐配置如下:

<property>
    <name>yarn.scheduler.maximum-allocation-mb</name>
    <value>16384</value>
</property>

(4)yarn.scheduler.minimum-allocation-mb

该参数的含义是,单个Container能够使用的最小内存,推荐配置如下:

<property>
    <name>yarn.scheduler.minimum-allocation-mb</name>
    <value>512</value>
</property>

2)Yarn配置实操

(1)修改$HADOOP_HOME/etc/hadoop/yarn-site.xml文件

(2)修改如下参数

<property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>65536</value>
</property>
<property>
    <name>yarn.nodemanager.resource.cpu-vcores</name>
    <value>16</value>
</property>
<property>
    <name>yarn.scheduler.maximum-allocation-mb</name>
    <value>16384</value>
</property>
<property>
    <name>yarn.scheduler.minimum-allocation-mb</name>
    <value>512</value>
</property>

(3)分发该配置文件

(4)重启Yarn。

1.2 MapReduce资源配置

MapReduce资源配置主要包括Map Task的内存和CPU核数,以及Reduce Task的内存和CPU核数。核心配置参数如下:

1)mapreduce.map.memory.mb

该参数的含义是,单个Map Task申请的container容器内存大小,其默认值为1024。该值不能超出yarn.scheduler.maximum-allocation-mb和yarn.scheduler.minimum-allocation-mb规定的范围。

该参数需要根据不同的计算任务单独进行配置,在hive中,可直接使用如下方式为每个SQL语句单独进行配置:

set  mapreduce.map.memory.mb=2048;

2)mapreduce.map.cpu.vcores

该参数的含义是,单个Map Task申请的container容器cpu核数,其默认值为1。该值一般无需调整。

3)mapreduce.reduce.memory.mb

该参数的含义是,单个Reduce Task申请的container容器内存大小,其默认值为1024。该值同样不能超出yarn.scheduler.maximum-allocation-mb和yarn.scheduler.minimum-allocation-mb规定的范围。

该参数需要根据不同的计算任务单独进行配置,在hive中,可直接使用如下方式为每个SQL语句单独进行配置:

set  mapreduce.reduce.memory.mb=2048;

4)mapreduce.reduce.cpu.vcores

该参数的含义是,单个Reduce Task申请的container容器cpu核数,其默认值为1。该值一般无需调整。

2、 Explain查看执行计划(重点)

2.1 Explain执行计划概述

Explain呈现的执行计划,由一系列Stage组成,这一系列Stage具有依赖关系,每个Stage对应一个MapReduce Job,或者一个文件系统操作等。

  • stage可以对应mr,也可以对应文件系统操作。因为不是所有的sql语句的底层都是mr。比如说load语句,底层就不是mr而是文件系统操作。
  • 有些sql复杂,需要多个mr才能计算,这个时候对应的也就有多个stage,多个stage之间也是有依赖关系的。依赖关系也就表明了哪个mr先执行,哪个后面执行。

若某个Stage对应的一个MapReduce Job,其Map端和Reduce端的计算逻辑分别由Map Operator Tree和Reduce Operator Tree进行描述,Operator Tree由一系列的Operator组成,一个Operator代表在Map或Reduce阶段的一个单一的逻辑操作,例如TableScan Operator,Select Operator,Join Operator等。

下图是由一个执行计划绘制而成:
在这里插入图片描述

常见的Operator及其作用如下:

  • TableScan:表扫描操作,通常map端第一个操作肯定是表扫描操作
  • Select Operator:选取操作
  • Group By Operator:分组聚合操作
  • Reduce Output Operator:输出到 reduce 操作
  • Filter Operator:过滤操作, 对应sql语句的where或者having
  • Join Operator:join 操作
  • File Output Operator:文件输出操作
  • Fetch Operator 客户端获取数据操作,因为进行查询之后,会把数据写入到hdfs的临时表当中,通过fetch可以展示在终端。

2.2 基本语法

  • 基本语法其实就是在sql的最前面加上explain
EXPLAIN [FORMATTED | EXTENDED | DEPENDENCY] query-sql

注:FORMATTED、EXTENDED、DEPENDENCY关键字为可选项,各自作用如下。

  • FORMATTED:将执行计划以格式化的JSON字符串的形式输出

在这里插入图片描述

  • EXTENDED:输出执行计划中的额外信息,通常是读写的文件名等信息
  • DEPENDENCY:输出执行计划读取的表及分区

在这里插入图片描述

2.3 案例实操

hive (default)> 
explain
select
    user_id,
    count(*)
from order_detail
group by user_id;

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、分组聚合优化

3.1 优化说明

Hive中未经优化的分组聚合,是通过一个MapReduce Job实现的。Map端负责读取数据,并按照分组字段分区,通过Shuffle,将数据发往Reduce端,各组数据在Reduce端完成最终的聚合运算。

  • 聚合之后数据量不可能变大,但是有可能数据量不变。

Hive对分组聚合的优化主要围绕着减少Shuffle数据量进行,具体做法是map-side聚合。所谓map-side聚合,就是在map端维护一个hash table,利用其完成部分的聚合,然后将部分聚合的结果,按照分组字段分区,发送至reduce端,完成最终的聚合。map-side聚合能有效减少shuffle的数据量,提高分组聚合运算的效率。

(1)map-side 聚合相关的参数

1、启用map-side聚合

set hive.map.aggr=true;
  • 该参数默认是开启的。

2、用于检测源表数据是否适合进行map-side聚合。检测的方法是:先对若干条数据进行map-side聚合,若聚合后的条数和聚合前的条数比值小于该值,则认为该表适合进行map-side聚合;否则,认为该表数据不适合进行map-side聚合,后续数据便不再进行map-side聚合。

set hive.map.aggr.hash.min.reduction=0.5;
  • 如果hive.map.aggr.hash.min.reduction的值为1,则所有的数据不会判断,直接全部进行map端聚合。

3、用于检测源表是否适合map-side聚合的条数。

set hive.groupby.mapaggr.checkinterval=100000;

4、map-side聚合所用的hash table,占用map task堆内存的最大比例,若超出该值,则会对hash table进行一次flush。

set hive.map.aggr.hash.force.flush.memory.threshold=0.9;

3.2 优化案例

select
    product_id,
    count(*)
from order_detail
group by product_id;

1、优化前(跑了46s)

set hive.map.aggr=false;

手动将该参数设置为false
在这里插入图片描述

在这里插入图片描述
2、优化后(跑了46s)

在这里插入图片描述

在这里插入图片描述

原因:和product_id的分组字段在这张表上的分布有关,因为hive在进行hive.groupby.mapaggr.checkinterval这个参数的校验时不是随机的去进行校验,只会对每个map的前面一部分数据进行判断。可能恰好前面的数据在进行分组聚合的时候,product_id的值都相同。

在这里插入图片描述

  • 也就是hive判断是否适合分组聚合的不是很智能,这个时候我们可以让其强制进行分组聚合。
set hive.map.aggr.hash.min.reduction=1;

此时时间跑了32秒,比之前快了10秒。

在这里插入图片描述

  • 按道理product_id只有100万数据,为什么这里map端输出的数据会大于100万?原因是因为触发了flush,也就是上面的第四个参数。例如,在flush之前已经有product_id=1的数据了,flush之后会重新用一个hash table,这样product_id可能就会输出多次了。

那么如果flush的次数多了,分组聚合的效果也不会很好,这个时候可以怎么办?
1、调整参数阈值。

set hive.map.aggr.hash.force.flush.memory.threshold=0.9;

2、如果调整之后效果还是不明显,说明hive的总内存小,则可以调整下面这个参数:

set  mapreduce.map.memory.mb=2048;

4、join优化

4.1 Join算法概述

Hive拥有多种join算法,包括Common Join,Map Join,Bucket Map Join,Sort Merge Buckt Map Join等,下面对每种join算法做简要说明:

(1)Common Join

Common Join是Hive中最稳定的join算法,其通过一个MapReduce Job完成一个join操作。Map端负责读取join操作所需表的数据,并按照关联字段进行分区,通过Shuffle,将其发送到Reduce端,相同key的数据在Reduce端完成最终的Join操作。如下图所示:

在这里插入图片描述

  • 如果是A join B join C ,这种时候是使用1个MR还是2个MR呢?
  • 如果join的字段都是相同的,这种时候没有必要使用两个MR,一个MR就够了,如下图所示。
    在这里插入图片描述
  • 如果join的字段不相同,就不能使用一个MR,因为map分区的字段不同的。这种情况下只能A和B去进行common join,之后在对join之后的中间结果与C表进行另一个common join。

因此,sql语句中的join操作和执行计划中的Common Join任务并非一对一的关系,一个sql语句中的相邻的且关联字段相同的多个join操作可以合并为一个Common Join任务。

例如:

hive (default)> 
select 
    a.val, 
    b.val, 
    c.val 
from a 
join b on (a.key = b.key1) 
join c on (c.key = b.key1)

上述sql语句中两个join操作的关联字段均为b表的key1字段,则该语句中的两个join操作可由一个Common Join任务实现,也就是可通过一个Map Reduce任务实现。

hive (default)> 
select 
    a.val, 
    b.val, 
    c.val 
from a 
join b on (a.key = b.key1) 
join c on (c.key = b.key2)

上述sql语句中的两个join操作关联字段各不相同,则该语句的两个join操作需要各自通过一个Common Join任务实现,也就是通过两个Map Reduce任务实现。

在这里插入图片描述

(2)Map Join

Map Join有两种触发方式,一种是用户在SQL语句中增加hint提示,另外一种是Hive优化器根据参与join表的数据量大小,自动触发。

Map Join算法可以通过两个只有map阶段的Job完成一个join操作。其适用场景为大表join小表。若某join操作满足要求,则第一个job会读取小表数据,将其制作为hash table,并上传至Hadoop 分布式缓存(本质上是上传至HDFS)。第二个job会先从分布式缓存中读取小表数据,并缓存在Map Task 的内存中,然后扫描大表数据,这样在map端即可完成关联操作。如下图所示:

在这里插入图片描述

  • 在map阶段完成join,比在reduce阶段完成join的效率要更高,因为这样可以省去shuffle的时间。
  • map join核心的点在于:要将小表的数据都缓存到mapper的内存里面,所以map join有瓶颈:不能适用于大表join大表的情况。
  • 但是并不是所有的join都能在map阶段完成,适用场景是:大表join小表

(3)Bucket Map Join

Bucket Map Join是对Map Join算法的改进,其打破了Map Join只适用于大表join小表的限制,可用于大表join大表的场景。

Bucket Map Join的核心思想是:【要满足下面几个条件】

1、参与join的表均为分桶表
2、关联字段为分桶字段
3、其中一张表的分桶数量是另外一张表分桶数量的整数倍

满足上面三个条件则能保证参与join的两张表的分桶之间具有明确的关联关系,就可以在两表的分桶间进行Map Join操作了。

这样一来,第二个Job的Map端就无需再缓存小表的全表数据了,而只需缓存其所需的分桶即可。其原理如图所示:

在这里插入图片描述

  • bucket map join和map join的核心原理是一致的,同样是分两个阶段去做,第一个阶段也是要由本地任务去读取相对来说小一点的表的数据,这里读B的数据,之后制作hash表。这里hash表是根据分桶的数据操作的。
  • 有几个桶就会有几个mapper。

(4)Sort Merge Bucket Map Join

Sort Merge Bucket Map Join(简称SMB Map Join)基于Bucket Map Join。SMB Map Join要求,参与join的表均为分桶表,且需保证分桶内的数据是有序的,且分桶字段、排序字段和关联字段为相同字段,且其中一张表的分桶数量是另外一张表分桶数量的整数倍。

SMB Map Join同Bucket Join一样,同样是利用两表各分桶之间的关联关系,在分桶之间进行join操作,不同的是,分桶之间的join操作的实现原理。Bucket Map Join,两个分桶之间的join实现原理为Hash Join算法;而SMB Map Join,两个分桶之间的join实现原理为Sort Merge Join算法。

Hash Join和Sort Merge Join均为关系型数据库中常见的Join实现算法。Hash Join的原理相对简单,就是对参与join的一张表构建hash table,然后扫描另外一张表,然后进行逐行匹配。Sort Merge Join需要在两张按照关联字段排好序的表中进行,其原理如图所示:

在这里插入图片描述

SMB Map Join与Bucket Map Join相比的优势是什么?
1、不需要在制作hash表,分桶在匹配的时候也不需要使用hash表。
2、对内存的要求更低,不需要将桶在放到第二个join的内存当中,因为桶内的数据已经有序了。

  • Hive中的SMB Map Join就是对两个分桶的数据按照上述思路进行Join操作。可以看出,SMB Map Join与Bucket Map Join相比,在进行Join操作时,Map端是无需对整个Bucket构建hash table,也无需在Map端缓存整个Bucket数据的,每个Mapper只需按顺序逐个key读取两个分桶的数据进行join即可。

4.2 使用说明

(1)map join

Map Join有两种触发方式,一种是用户在SQL语句中增加hint提示,另外一种是Hive优化器根据参与join表的数据量大小,自动触发。

1)Hint提示

用户可通过如下方式,指定通过map join算法,并且ta将作为map join中的小表。这种方式已经过时,不推荐使用。

hive (default)> 
select /*+ mapjoin(ta) */
    ta.id,
    tb.id
from table_a ta
join table_b tb
on ta.id=tb.id;

在这里插入图片描述

2)自动触发

Hive在编译SQL语句阶段,起初所有的join操作均采用Common Join算法实现。

之后在物理优化阶段,Hive会根据每个Common Join任务所需表的大小判断该Common Join任务是否能够转换为Map Join任务,若满足要求,便将Common Join任务自动转换为Map Join任务。

但有些Common Join任务所需的表大小,在SQL的编译阶段是未知的(例如对子查询进行join操作),所以这种Common Join任务是否能转换成Map Join任务在编译阶是无法确定的。

针对这种情况,Hive会在编译阶段生成一个条件任务(Conditional Task),其下会包含一个计划列表,计划列表中包含转换后的Map Join任务以及原有的Common Join任务。
在这里插入图片描述

  • 这个条件任务会包含所有可能的map join任务。
  • 原有的Common Join任务是作为一个后备任务的。

最终具体采用哪个计划,是在运行时决定的。大致思路如下图所示:

在这里插入图片描述

  • 在表已知大小的情况下,就不需要使用这个conditional task了。

在这里插入图片描述
假设现在是a表 join b表

寻找大表候选人阶段:
1、如果是left join,则大表候选人为a表。
2、如果是inner join,则大表候选人为a表和b表。
3、如果是right join,则大表候选人为b表。
4、如果是full join,则这种情况下无法进行map join。因为这时候必须保证返回a和b的全部数据。但是map join的原理是缓存大表,遍历小表,因此无法做到。

在这里插入图片描述

在这里插入图片描述
图中涉及到的参数如下:

1、启动Map Join自动转换

set hive.auto.convert.join=true;

2、一个Common Join operator转为Map Join operator的判断条件,若该Common Join相关的表中,存在n-1张表的已知大小总和<=该值,则生成一个Map Join计划,此时可能存在多种n-1张表的组合均满足该条件,则hive会为每种满足条件的组合均生成一个Map Join计划,同时还会保留原有的Common Join计划作为后备(back up)计划,实际运行时,优先执行Map Join计划,若不能执行成功,则启动Common Join后备计划。

set hive.mapjoin.smalltable.filesize=250000;

3、开启无条件转Map Join

set hive.auto.convert.join.noconditionaltask=true;

4、无条件转Map Join时的小表之和阈值,若一个Common Join operator相关的表中,存在n-1张表的大小总和<=该值,此时hive便不会再为每种n-1张表的组合均生成Map Join计划,同时也不会保留Common Join作为后备计划。而是只生成一个最优的Map Join计划。

set hive.auto.convert.join.noconditionaltask.size=10000000;

(2)map join案例

(1)首先查看下面的sql语句优化前是如何执行的。

在这里插入图片描述

  • 可以看到这是多表join,并且关联的字段是不同的。字段不同,因此是两个common join task。

不进行优化,所以下面这个参数需要关闭,下面这个参数是自动进行map join优化的子开关。

set hive.auto.convert.join=false;

使用explain查看执行计划

在这里插入图片描述

  • stage1做了什么?

stage1的第一个tablescan

在这里插入图片描述
stage1的第二个tablescan

在这里插入图片描述

stage1的reduce阶段

在这里插入图片描述

  • stage2做了什么?

在这里插入图片描述

经过上面的分析发现:

我们自己写的sql语句的多表join的顺序,和真正执行计划当中表的join顺序是不同的。hive会选取最小代价的方式进行多表join。

(2)优化思路

  • 进行优化的时候,必须考虑表的大小,不能脱离表的大小去考虑优化思路。

经分析,参与join的三张表,数据量如下

表名大小
order_detail1176009934(约1122M)【大表】
product_info25285707(约24M)【小表】
province_info369(约0.36K)【小表】

在这里插入图片描述

注:可使用如下语句获取表/分区的大小信息

hive (default)> 
desc formatted table_name partition(partition_col='partition');

通过partition(partition_col=‘partition’),这个参数,则只会打印’partition这个分区的信息了。

三张表中,product_info和province_info数据量较小,可考虑将其作为小表,进行Map Join优化。

根据前文Common Join任务转Map Join任务的判断逻辑图,可得出以下优化方案:

方案一:(9min41s)

启用Map Join自动转换。

hive (default)> 
set hive.auto.convert.join=true;

不使用无条件转Map Join,因此会产生条件任务。

hive (default)> 
set hive.auto.convert.join.noconditionaltask=false;

调整hive.mapjoin.smalltable.filesize参数,使其大于等于product_info。这样的话可以保证product_info表和province_info表都放到内存里面。

hive (default)> 
set hive.mapjoin.smalltable.filesize=25285707;

这样可保证将两个Common Join operator均可转为Map Join operator,并保留Common Join作为后备计划,保证计算任务的稳定。

在这里插入图片描述
调整优化参数之后再次查看执行计划:

在这里插入图片描述

  • stage5和stage6是将第三张表和中间结果各自当成大表,生成的执行任务。

将流程图放大如下所示:

在这里插入图片描述

方案二:(4min52s)

启用Map Join自动转换。

hive (default)> 
set hive.auto.convert.join=true;

使用无条件转Map Join。也就是不需要条件任务了。因为我们三张表的大小都知道了,就不需要了。

hive (default)> 
set hive.auto.convert.join.noconditionaltask=true;

没有条件任务之后,就不用再调整hive.mapjoin.smalltable.filesize参数了,而要调整

调整hive.auto.convert.join.noconditionaltask.size参数,使其大于等于product_info和province_info之和。

hive (default)> 
set hive.auto.convert.join.noconditionaltask.size=25286076;

这样可直接将两个Common Join operator转为两个Map Join operator,并且由于两个Map Join operator的小表大小之和小于等于hive.auto.convert.join.noconditionaltask.size,故两个Map Join operator任务可合并为同一个。这个方案计算效率最高,但需要的内存也是最多的。

方案二的执行计划如下图所示,相比于方案一要简洁很多。

在这里插入图片描述
在这里插入图片描述

  • 分析:为什么方案二比方案一更快
    方案一虽然两个都是map join,但是没有进行合并。方案二不要条件任务,并且在内存充足的情况下,可以将两个map join进行合并,

方案三:(时间和方案一差不多)

启用Map Join自动转换。

hive (default)> 
set hive.auto.convert.join=true;

使用无条件转Map Join。

hive (default)> 
set hive.auto.convert.join.noconditionaltask=true;

调整hive.auto.convert.join.noconditionaltask.size参数,使其等于product_info。

hive (default)> 
set hive.auto.convert.join.noconditionaltask.size=25285707;

这样可直接将两个Common Join operator转为Map Join operator,但不会将两个Map Join的任务合并。该方案计算效率比方案二低,但需要的内存也更少。

在这里插入图片描述

  • 需要注意的是,文件在磁盘当中占用的空间,和加载到内存当中占用空间的大小是不同的。例如:数据从文件当中加载到内存当中需要有一个解序列化的过程,解序列化之后数据会变大的,除此之外,数据来到内存当中,可能会封装成对象,也会有一些额外的开销。这种情况下文件的大小是远小于加载到内存当中的大小的。大小一般是10倍的差距。也就是如果文件是1G的话,内存当中会是10G。

在这里插入图片描述

(3)Bucket Map Join

在MR当中,Bucket Map Join不支持自动转换,发须通过用户在SQL语句中提供如下Hint提示,并配置如下相关参数,方可使用。

1)Hint提示

hive (default)> 
select /*+ mapjoin(ta) */
    ta.id,
    tb.id
from table_a ta
join table_b tb on ta.id=tb.id;

2)相关参数

1、关闭cbo优化,cbo会导致hint信息被忽略

set hive.cbo.enable=false;

2、map join hint默认会被忽略(因为已经过时),需将如下参数设置为false

set hive.ignore.mapjoin.hint=false;

3、启用bucket map join优化功能

set hive.optimize.bucketmapjoin = true;

(4)Bucket Map Join案例

1)示例SQL

hive (default)> 
select
    *
from(
    select
        *
    from order_detail
    where dt='2020-06-14'
)od
join(
    select
        *
    from payment_detail
    where dt='2020-06-14'
)pd
on od.id=pd.order_detail_id;

2)优化前

上述SQL语句共有两张表一次join操作,故优化前的执行计划应包含一个Common Join任务,通过一个MapReduce Job实现。执行计划如下图所示:

在这里插入图片描述

  • 上面的图使用的是common join

3)优化思路

经分析,参与join的两张表,数据量如下。

表名大小
order_detail1176009934(约1122M)
payment_detail334198480(约319M)
  • 这里的大小是在底层文件的大小,而不是在内存当中的大小。

如果此时使用map join将payment_detail当成小表的话,按照之前的规律,319M*10大于3G,在内存当中需要占用3G多才能缓存小表的Hash表。

因此这个使用考虑使用bucket map join。首先确保这两张表是分桶表,分桶个数成倍数,且两张表的分桶字段需要相同。

首先需要依据源表创建两个分桶表,order_detail建议分16个bucket,payment_detail建议分8个bucket,注意分桶个数的倍数关系以及分桶字段。

–订单表

hive (default)> 
drop table if exists order_detail_bucketed;
create table order_detail_bucketed(
    id           string comment '订单id',
    user_id      string comment '用户id',
    product_id   string comment '商品id',
    province_id  string comment '省份id',
    create_time  string comment '下单时间',
    product_num  int comment '商品件数',
    total_amount decimal(16, 2) comment '下单金额'
)
clustered by (id) into 16 buckets
row format delimited fields terminated by '\t';

–支付表

hive (default)> 
drop table if exists payment_detail_bucketed;
create table payment_detail_bucketed(
    id              string comment '支付id',
    order_detail_id string comment '订单明细id',
    user_id         string comment '用户id',
    payment_time    string comment '支付时间',
    total_amount    decimal(16, 2) comment '支付金额'
)
clustered by (order_detail_id) into 8 buckets
row format delimited fields terminated by '\t';

然后向两个分桶表导入数据。

订单表:

hive (default)> 
insert overwrite table order_detail_bucketed
select
    id,
    user_id,
    product_id,
    province_id,
    create_time,
    product_num,
    total_amount   
from order_detail
where dt='2020-06-14';

分桶表:

hive (default)> 
insert overwrite table payment_detail_bucketed
select
    id,
    order_detail_id,
    user_id,
    payment_time,
    total_amount
from payment_detail
where dt='2020-06-14';

然后设置以下参数:

1、关闭cbo优化,cbo会导致hint信息被忽略,需将如下参数修改为false

set hive.cbo.enable=false;

2、map join hint默认会被忽略(因为已经过时),需将如下参数修改为false

set hive.ignore.mapjoin.hint=false;

3、启用bucket map join优化功能,默认不启用,需将如下参数修改为true

set hive.optimize.bucketmapjoin = true;

最后在重写SQL语句,如下:

hive (default)> 
select /*+ mapjoin(pd) */
    *
from order_detail_bucketed od
join payment_detail_bucketed pd on od.id = pd.order_detail_id;

优化后的执行计划如图所示:

在这里插入图片描述

  • 上面的图使用的是map join

在这里插入图片描述

(5) Sort Merge Bucket Map Join

Sort Merge Bucket Map Join有两种触发方式,包括Hint提示和自动转换。Hint提示已过时,不推荐使用。

下面是自动转换的相关参数:

1、启动Sort Merge Bucket Map Join优化

set hive.optimize.bucketmapjoin.sortedmerge=true;

2、使用自动转换SMB Join

set hive.auto.convert.sortmerge.join=true;

使用和上一个案例相同的数据(分桶之后多加了一个桶内有序),得到的结果如下图所示:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1339061.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vivado 快速到慢速时钟之间的多循环

快速到慢速时钟之间的多循环 在下面的场景中&#xff0c;启动时钟CLK1是快速时钟&#xff0c;捕获时钟CLK2是慢时钟。如下图所示。 在下一示例中&#xff0c;启动时钟CLK1是快速时钟。捕获时钟CLK2较慢时钟假设CLK1是CLK2的频率的三&#xff08;3&#xff09;倍。如下图所示。…

docker小白第七天

docker小白第七天 tomcat安装 docker hub上面查找tomcat镜像 点进tomcat&#xff0c;可以看到下载镜像的命令。但是因为文件太大&#xff0c;并且是国外下载镜像很慢&#xff0c;所以我们从前期配置好的阿里云镜像仓库下载。 docker search tomcat docker pull tomcatdocker…

后端主流框架-SpringMvc-day2

Java中的文件下载 2 文件下载 文件下载&#xff1a;就是将服务器&#xff08;表现在浏览器中&#xff09;中的资源下载&#xff08;复制&#xff09;到本地磁盘&#xff1b; 2.1 前台代码 前台使用超链接&#xff0c;超链接转到后台控制器&#xff0c;在控制器通过流的方式…

Intel FPGA 技术开放日

概要 时间&#xff1a;2023.11.14 全天 &#xff08; 9:00 - 16: 20&#xff09; 地点&#xff1a;北京望京. 凯悦酒店 主题内容&#xff1a;分享交流了Intel FPGA 产品技术优势和落地实践方案。 会议的议程 开场致词&#xff1a; FPGA业务&#xff0c;是几年前intel收购而…

虚拟环境和Pycharm中均有transforms仍报ModuleNotFoundError:No module named ‘transformers‘

问题&#xff1a;运行新模型&#xff0c;配置了新环境&#xff0c;下载了包后&#xff0c;仍然报ModuleNotFoundError&#xff1a;No module named transformers 错误。 查看Pycharm解释器&#xff1a; 没问题&#xff01;&#xff01;&#xff01;&#xff1f; 命令行查看虚…

Flink Job 执行流程

Flink On Yarn 模式 ​ 基于Yarn层面的架构类似 Spark on Yarn模式&#xff0c;都是由Client提交App到RM上面去运行&#xff0c;然后 RM分配第一个container去运行AM&#xff0c;然后由AM去负责资源的监督和管理。需要说明的是&#xff0c;Flink的Yarn模式更加类似Spark on Ya…

Hive安装笔记——备赛笔记——2024全国职业院校技能大赛“大数据应用开发”赛项——任务2:离线数据处理

将下发的ds_db01.sql数据库文件放置mysql中 12、编写Scala代码&#xff0c;使用Spark将MySQL的ds_db01库中表user_info的全量数据抽取到Hive的ods库中表user_info。字段名称、类型不变&#xff0c;同时添加静态分区&#xff0c;分区字段为etl_date&#xff0c;类型为String&am…

【电商项目实战】基于SpringBoot完成首页搭建

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《电商项目实战》。&#x1f3af;&#x1f3af; &am…

【PyQt学习篇 · ⑭】:QTableView的使用

文章目录 QTableView的使用示例 QTableView的使用 QTableView 是 PyQt 中用于显示表格数据的窗口部件&#xff0c;它提供了一个灵活的方式来显示和编辑数据。下面是一些关于 QTableView 的使用的具体信息&#xff1a; 创建 QTableView 对象&#xff1a; from PyQt5.QtWidgets …

计算机网络基础:OSI参考模型是什么?

一、概述 OSI (Open Systems Interconnection Model,开放式系统互联模型)&#xff0c;由ISO ( International Organization for Standardization&#xff0c;国际标准化组织 ) 收录在ISO 7489标准中并于1984年发布。 意义&#xff1a; 在OSI没有出来之前我们的网络有如下问题…

Linux Debian12使用podman安装upload-labs靶场环境

一、upload-labs简介 PHP语言编写&#xff0c;持续收集渗透测试和CTF中针对文件上传漏洞的靶场&#xff0c;总共21关&#xff0c;每一关都包含着不同的上传绕过方式。 二、安装podman环境 Linux Debian系统如果没有安装podman容器环境&#xff0c;可以参考这篇文章先安装pod…

如何在vscode当中预览html文件运行结果

如何在vscode当中预览html文件运行结果 下载拓展内容打开拓展界面下载拓展 运行html文件参考内容 上一篇文章当中讲了如何实现在网页上对html文件的预览,但是这样子其实在运行代码的过程当中效果比较差,那么还需要可以实时预览运行的结果 下载拓展内容 打开拓展界面 下载拓展 …

微信小程序发放红包封面及领取

微信小程序发放红包封面及领取 一、微信红包封面开放平台配置发放的红包封面二、小程序后管平台设置配置录入红包封面奖品信息三、微信小程序调用接口效果 一、微信红包封面开放平台配置发放的红包封面 微信红包封面开放平台 红包封面的发放方式有&#xff1a;领取二维码、领…

unity 保存和加载窗口布局

这么简单的事网上一堆废话文章 右上角&#xff0c;Layout点开后有保存和删除 要切换布局点红框里的已经保存的布局

Linux下MQTT环境的简单应用及搭建——之Mosquitto

文章目录 前言一、ubuntu搭建mqtt服务器 | 概要二、整体架构流程 | 技术实现细节1、下载源码2、安装Mosquitto3、解压并修改配置文件4、关于Mosquitto常见的一些操作指令5、启动mosquitto6、测试mosquitto测试1&#xff1a;Linux多终端交互测试测试2&#xff1a;Linux与Windows…

2023安洵杯-秦岭防御军wp

reverse 感觉有点点简单## import base64 def ba64_decode(str1_1):mapp "4KBbSzwWClkZ2gsr1qAQu0FtxOm6/iVcJHPY9GNp7EaRoDf8UvIjnL5MydTX3eh"data_1 [0] * 4flag_1 [0] * 3for i in range(32, 127):for y in range(32, 127):for k in range(32, 127):flag_1[0]…

MIT线性代数笔记-第30讲-奇异值分解

目录 30.奇异值分解打赏 30.奇异值分解 奇异值分解&#xff08;简称 S V D SVD SVD分解&#xff09;可以将一个比较复杂的矩阵用更小更简单的几个子矩阵相乘来表示&#xff0c;这些小矩阵描述的都是矩阵的重要的特性。奇异值分解在图形降噪、推荐系统中都有很重要的应用。 对…

最优化考试之牛顿法

最优化考试之牛顿法 一、牛顿法1.问题条件2.求解过程3.例子 PS 一、牛顿法 1.问题条件 目标函数 f ( x ) f(x) f(x)&#xff0c;求极小值初始点 x 0 x_0 x0​精度要求e&#xff08;没有提就是近似0&#xff09; 2.求解过程 求解一阶雅克比矩阵 ∇ f ( x ) ∇f(x) ∇f(x)和二…

分享11 种有用的 JavaScript 技巧

今天这篇文章&#xff0c;我想与你分享 11个有用的JavaScript实用小技巧&#xff0c;它们将极大地提高你的工作效率。 1.生成随机颜色的两种方式 1&#xff09;.生成RandomHexColor const generateRandomHexColor () > {return #${Math.floor(Math.random() * 0xffffff)…

Java多线程的概念以及三种实现方式(Thread类,Callable接口,Runnable接口)

目录 1.线程2.多线程的应用场景3.并发和并行4.多线程的实现方式1.继承Thread类的方式进行实现2.实现**Runnable接口**的方式进行实现3.利用Callable接口和Future接口方式实现 4.多线程几种实现方式之间的对比 1.线程 线程是操作系统能够进行运算调度的最小单位。它被包含在进程…