超维空间S2无人机使用说明书——31、使用yolov8进行目标识别

news2025/2/8 7:22:52

引言:为了提高yolo识别的质量,提高了yolo的版本,改用yolov8进行物体识别,同时系统兼容了低版本的yolo,包括基于C++的yolov3和yolov4,以及yolov7。

简介,为了提高识别速度,系统采用了GPU进行加速,在使用7W功率的情况,大概可以稳定在20FPS,满功率情况下可以适当提高。

硬件:D435摄像头,Jetson orin nano 8G

环境:ubuntu20.04,ros-noetic, yolov8

步骤一: 启动摄像头,获取摄像头发布的图像话题

roslaunch realsense2_camera rs_camera.launch  

请添加图片描述

没有出现红色报错,出现如下界面,表明摄像头启动成功

请添加图片描述

步骤二:启动yolov8识别节点

roslaunch yolov8_ros yolo_v8.launch 

launch文件如下,参数use_cpu设置为false,因为实际使用GPU加速,不是CPU跑,另外参数pub_topic是yolov8识别到目标后发布出来的物体在镜头中的位置,程序作了修改,直接给出目标物的中心位置,其中参数image_topic是订阅的节点话题,一定要与摄像头发布的实际话题名称对应上。

<?xml version="1.0" encoding="utf-8"?>
<launch>

  <!-- Load Parameter -->
  
  <param name="use_cpu"           value="false" />

  <!-- Start yolov8 and ros wrapper -->
  <node pkg="yolov8_ros" type="yolo_v8.py" name="yolov8_ros" output="screen" >
    <param name="weight_path"       value="$(find yolov8_ros)/weights/yolov8n.pt"/>
    <param name="image_topic"       value="/camera/color/image_raw" />
    <param name="pub_topic"         value="/object_position" />
    <param name="camera_frame"      value="camera_color_frame"/>
    <param name="visualize"         value="false"/>
    <param name="conf"              value="0.3" />
  </node>
</launch>

请添加图片描述

出现如下界面表示yolov8启动成功

请添加图片描述

步骤三:打开rqt工具,查看识别效果

rqt_image_view 

请添加图片描述

等待出现如下界面后,选择yolov8/detection_image查看yolov8识别效果

请添加图片描述

从图中可以看出,在7W功率的情况下,大概在18帧的效果,识别准确度比较高

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1336181.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C# WPF上位机开发(子窗口通知父窗口更新进度)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 这两天在编写代码的时候&#xff0c;正好遇到一个棘手的问题&#xff0c;解决之后感觉挺有意义的&#xff0c;所以先用blog记录一下&#xff0c;后…

数组基础及相关例题

目录 1.一维数组的初始化 2.二维数组的初始化 3.字符数组 1.puts 2.gets 3.strcat 4.strcpy 5.strcmp 6.strlen ​编辑 7. strlwr与strupr 易错习题 1 2 3 4 5 6 1.一维数组的初始化 2.二维数组的初始化 注意 第一维的长度不用指定&#xff0c;第二维的…

WU反走样算法

WU反走样算法 由离散量表示连续量而引起的失真称为走样&#xff0c;用于减轻走样现象的技术成为反走样&#xff0c;游戏中称为抗锯齿。走样是连续图形离散为想想点后引起的失真&#xff0c;真实像素面积不为 零。走样是光栅扫描显示器的一种固有现象&#xff0c;只能减轻&…

FPGA分频电路设计(2)

实验要求&#xff1a; 采用 4 个开关以二进制形式设定分频系数&#xff08;0-10&#xff09;&#xff0c;实现对已知信号的分频。 类似实验我之前做过一次&#xff0c;但那次的方法实在是太笨了&#xff1a; 利用VHDL实现一定系数范围内的信号分频电路 需要重做以便将来应对更…

B+树索引和哈希索引的区别?

B树是一个平衡的多叉树&#xff0c;从根节点到每个叶子节点的高度差值不超过1&#xff0c;而且同层级的节点间有指针相互链接&#xff0c;是有序的&#xff0c;如下图&#xff1a; 哈希索引就是采用一定的哈希算法&#xff0c;把键值换算成新的哈希值&#xff0c;检索时不需要类…

STM32独立看门狗

时钟频率 40KHZ 看门狗简介 STM32F10xxx 内置两个看门狗&#xff0c;提供了更高的安全性、时间的精确性和使用的灵活性。两个看 门狗设备 ( 独立看门狗和窗口看门狗 ) 可用来检测和解决由软件错误引起的故障&#xff1b;当计数器达到给 定的超时值时&#xff0c;触发一个中…

MyBatis中select语句中使用String[]数组作为参数

&#x1f607;作者介绍&#xff1a;一个有梦想、有理想、有目标的&#xff0c;且渴望能够学有所成的追梦人。 &#x1f386;学习格言&#xff1a;不读书的人,思想就会停止。——狄德罗 ⛪️个人主页&#xff1a;进入博主主页 &#x1f5fc;专栏系列&#xff1a;无 &#x1f33c…

CMakeLists.txt

源码结构 生成可执行程序 # CMake最小版本号 cmake_minimum_required(VERSION 3.15.0)#增加-stdc11 set(CMAKE_CXX_STANDARD 11)#设置工程名称 project(calculate)#[[ #方法一&#xff1a;添加源码文件 #aux_source_directory(< dir > < variable >) #dir&#xf…

Netty组件基础

Netty入门简介 netty是一个异步、基于事件驱动的网络应用框架&#xff0c;用于快速开发可维护、高性能的网络服务器和客户端。 Netty优势 Netty解决了TCP传输问题&#xff0c;如黏包、半包问题&#xff0c;解决了epoll空轮询导致CPU100%的问题。并且Netty对API进行增强&#xf…

Github 2023-12-26开源项目日报 Top10

根据Github Trendings的统计&#xff0c;今日(2023-12-26统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目7非开发语言项目1JavaScript项目1TypeScript项目1 GPT PILOT: 从头开始编写可扩展的应用程序的开发…

MVC下的四种验证编程方式

ASP.NET MVC采用Model绑定为目标Action生成了相应的参数列表&#xff0c;但是在真正执行目标Action方法之前&#xff0c;还需要对绑定的参数实施验证以确保其有效性&#xff0c;我们将针对参数的验证成为Model绑定。总地来说&#xff0c;我们可以采用4种不同的编程模式来进行针…

北亚服务器数据恢复-服务器断电导致raid5故障的数据恢复案例

服务器数据恢复环境&#xff1a; 服务器有一组由12块硬盘组建的raid5阵列。 服务器故障&分析&#xff1a; 机房供电不稳导致服务器意外断电&#xff0c;工作人员重启服务器后发现服务器无法正常使用。 根据故障情况&#xff0c;北亚企安数据恢复工程师初步判断服务器故障原…

【深度学习目标检测】十一、基于深度学习的电网绝缘子缺陷识别(python,目标检测,yolov8)

YOLOv8是一种物体检测算法&#xff0c;是YOLO系列算法的最新版本。 YOLO&#xff08;You Only Look Once&#xff09;是一种实时物体检测算法&#xff0c;其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化&#xff0c;提高了检测速度和准确性。…

408计算机网络错题知识点拾遗

个人向错题相关部分整理&#xff0c;涵盖真题、模拟、课后习题等。 408相关&#xff1a; 408数据结构错题知识点拾遗 408计算机网络错题知识点拾遗 计网复习资料下载整合 已进行资源绑定&#xff0c;相关计网复习资料上方下载。 第一章 计算机网络体系结构 第二章 物理层 第三…

H.266/VVC 关键帧内预测技术

在 VVC 中&#xff0c;帧内预测过程分为三个步骤&#xff1a;首先&#xff0c;从当前 CU 左侧和上方相 邻块获取参考像素&#xff0c;并对获取的参考像素值进行平滑滤波。其次&#xff0c;基于参考像素 预测得到当前 CU 像素值。最后为了提高预测像素值的精度&#xff0c;平滑滤…

【数据库系统概论】第3章-关系数据库标准语言SQL(3)

文章目录 3.5 数据更新3.5.1 插入数据3.5.2 修改数据3.5.3 删除数据 3.6 空值的处理3.7 视图3.7.1 建立视图3.7.2 查询视图3.7.3 更新视图3.7.4 视图的作用 3.5 数据更新 3.5.1 插入数据 注意&#xff1a;插入数据时要满足表或者列的约束条件&#xff0c;否则插入失败&#x…

类加载器及其类加载子系统

类加载器子系统作用 类加载器子系统的作用是负责将字节码文件加载到内存中&#xff0c;并将其转化为能够被虚拟机直接使用的形式。它是Java虚拟机的一部分&#xff0c;具体作用如下&#xff1a; 加载 类加载器负责将类的字节码文件加载到虚拟机的方法区中&#xff0c;以便…

通过自然语言处理增强推荐系统:协同方法

一、介绍 自然语言处理 (NLP) 是人工智能的一个分支&#xff0c;专注于使机器能够以有意义且有用的方式理解、解释和响应人类语言。它包含一系列技术&#xff0c;包括情感分析、语言翻译和聊天机器人。 另一方面&#xff0c;推荐系统&#xff08;RecSys&#xff09;是旨在向用户…

elasticsearch 笔记二:搜索DSL 语法(搜索API、Query DSL)

文章目录 一、搜索 API1. 搜索 API 端点地址2. URI Search3. 查询结果说明5. 特殊的查询参数用法6. Request body Search6.1 query 元素定义查询6.2 指定返回哪些内容**6.2.1 source filter 对_source 字段进行选择****6.2.2 stored_fields 来指定返回哪些 stored 字段****6.2.…

【Azure 架构师学习笔记】- Power Platform(1) - 简介

本文属于【Azure 架构师学习笔记】系列。 本文属于【Power Platform】系列。 Power Platform 它是一个SaaS平台&#xff0c;支持和延伸M365&#xff0c; Dynamics 365和Azure甚至其他第三方服务。主要提供低代码&#xff0c;自动化&#xff0c;数据驱动和定制化业务逻辑的服务…