Python电能质量扰动信号分类(三)基于Transformer的一维信号分类模型

news2025/2/11 9:20:26

目录

引言

1 数据集制作与加载

1.1 导入数据

1.2 制作数据集

2 Transformer分类模型和超参数选取

2.1 定义Transformer分类模型

2.2 定义模型参数

3 Transformer模型训练与评估

3.1 模型训练

3.2 模型评估

代码、数据如下:


往期精彩内容:

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类-CSDN博客

Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类-CSDN博客

引言

本文基于Python仿真的电能质量扰动信号,先经过数据预处理进行数据集的制作和加载,然后通过Pytorch实现Transformer模型对扰动信号的分类。Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附10分类数据集):

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

部分扰动信号类型波形图如下所示:

1 数据集制作与加载

1.1 导入数据

在参考IEEE Std1159-2019电能质量检测标准与相关文献的基础上构建了扰动信号的模型,生成包括正常信号在内的10中单一信号和多种复合扰动信号。参考之前的文章,进行扰动信号10分类的预处理:

第一步,按照公式模型生成单一信号

单一扰动信号可视化:

第二步,导入十分类数据

import pandas as pd
import numpy as np

# 样本时长0.2s  样本步长1024  每个信号生成500个样本  噪声0DB  
window_step = 1024
samples = 500
noise = 0
split_rate = [0.7, 0.2, 0.1]  # 训练集、验证集、测试集划分比例

# 读取已处理的 CSV 文件
dataframe_10c = pd.read_csv('PDQ_10c_Clasiffy_data.csv' )
dataframe_10c.shape

1.2 制作数据集

第一步,定义制作数据集函数

第二步,制作数据集与分类标签

from joblib import dump, load
# 生成数据
train_dataframe, val_dataframe, test_dataframe = make_data(dataframe_10c, split_rate)
# 制作标签
train_xdata, train_ylabel = make_data_labels(train_dataframe)
val_xdata, val_ylabel = make_data_labels(val_dataframe)
test_xdata, test_ylabel = make_data_labels(test_dataframe)
# 保存数据
dump(train_xdata, 'TrainX_1024_0DB_10c')
dump(val_xdata, 'ValX_1024_0DB_10c')
dump(test_xdata, 'TestX_1024_0DB_10c')
dump(train_ylabel, 'TrainY_1024_0DB_10c')
dump(val_ylabel, 'ValY_1024_0DB_10c')
dump(test_ylabel, 'TestY_1024_0DB_10c')

2 Transformer分类模型和超参数选取

2.1 定义Transformer分类模型

注意:输入数据进行了堆叠 ,把一个1*1024 的序列 进行划分堆叠成形状为 32 * 32, 就使输入序列的长度降下来了。

2.2 定义模型参数

# 模型参数
input_dim = 32 # 输入维度
hidden_dim = 512  # 注意力维度
output_dim  = 10  # 输出维度
num_layers = 4   # 编码器层数
num_heads = 8    # 多头注意力头数
batch_size = 64
# 模型
model = TransformerModel(input_dim, output_dim, hidden_dim, num_layers, num_heads, batch_size)  
model = model.to(device)
loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)  # 优化器

3 Transformer模型训练与评估

3.1 模型训练

训练结果

100个epoch,准确率将近90%,Transformer模型分类效果良好,参数过拟合了,适当调整模型参数,降低模型复杂度,还可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加 Transformer层数和隐藏层维度数,微调学习率;

  • 增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3.2 模型评估

# 模型 测试集 验证  
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练


# 加载模型
model =torch.load('best_model_transformer.pt')


# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():
    correct_test = 0
    test_loss = 0
    for test_data, test_label in test_loader:
        test_data, test_label = test_data.to(device), test_label.to(device)
        test_output = model(test_data)
        probabilities = F.softmax(test_output, dim=1)
        predicted_labels = torch.argmax(probabilities, dim=1)
        correct_test += (predicted_labels == test_label).sum().item()
        loss = loss_function(test_output, test_label)
        test_loss += loss.item()


test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')


Test Accuracy: 0.9070  Test Loss: 0.22114271

代码、数据如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1335724.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Leetcode—86.分隔链表【中等】

2023每日刷题(六十九) Leetcode—86.分隔链表 实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode* partition(struct ListNode* head, int x) {struct ListNode…

实验室安全教育考试管理系统v3.0功能介绍

瑞熙贝通实验室安全练习和在线考试系统,采取线上培训学习与安全考试相结合的教学形式,在学生进入开放实验室之前通过系统对实验的安全与规范有一个系统的认识与学习。通过线上考试系统,为评价学生的实验室安全学习效果提供了快速有效的实验平…

【bug】uniapp一键登录,自定义协议条款是否支持内部路由?

uniapp一键登录的自定义协议条款,不支持内部路由跳转 在uniapp文档上搜一键登录 加二维码之后可以提问

动态内存管理(补)

1.内核空间的代码为操作系统 2.栈区:函数内局部变量在栈区上创建,执行结束后其所占空间被自动释放,栈区的内存运算内置于处理器的指令集中,效率高,但容量有限。栈区主要存放函数的局部变量,函数参数&#…

Windows系统配置pytorch环境,Jupyter notebook编辑器安装使用(深度学习本地篇)

如今现在好一点的笔记本都自带英伟达独立显卡,对于一些简单的深度学习项目,是不需要连接服务器的,甚至数据量不大的话,cpu也足够进行训练学习。我把电脑上一些以前的笔记整理一下,记录起来,方便自己35岁事业…

12/25 分析算法时间复杂度的基本方法

分析算法时间复杂度的基本方法: 若f(n)是m次多项式,则T(n)O() 忽略所有低次幂和最高次幂的系数,体现出增长率的含义! 1.找出语句频度最大的那条语句作为基本语…

Django(三)

1.快速上手 确保app已注册 【settings.py】 编写URL和视图函数对应关系 【urls.py】 编写视图函数 【views.py】 启动django项目 命令行启动python manage.py runserverPycharm启动 1.1 再写一个页面 2. templates模板

案例163:基于微信小程序的校园二手交易平台系统设计与开发

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…

doris数据模型,06-Aggregate(聚合模型)

聚合模型的特点 将表中的列分为Key和Value。 Key是数据的维度列,比如时间,地区等等。key相同时会发生聚合。 Value是数据的指标列,比如点击量,花费等等。 每个指标列还会有自己的聚合函数,如:sum&#xff…

React学习计划-React16--React基础(六)路由

路由 一、版本5路由 1. react-router-dom 2. 路由的使用 1. 基础使用 安装&#xff1a;yarn add react-router-dom5明确好界面中的导航区、展示区导航区Link标签包裹 <Link to"/home">Home</Link>展示区写在Route标签进行匹配 <Route path/home …

Wi-Fi、蓝牙、ZigBee等多类型无线连接方式的安全物联网网关设计

随着物联网和云计算技术的飞速发展.物联网终端的数量越来越多&#xff0c;终端的连接方式也更趋多样化&#xff0c;比如 Wi-Fi蓝牙和 ZigBee 等。现有的物联网网关大多仅支持一种或者几种终端的接人方式。无法满足终端异构性的需求。同时&#xff0c;现有的物联网网关与终端设备…

2024 年网络安全展望:未来是什么?

为了建立强大的网络安全计划&#xff0c;组织必须首先了解整体威胁环境不断变化的性质。 人工智能在成为安全团队的帮助之前&#xff0c;将为网络犯罪分子带来巨大的福音。 网络犯罪分子和不良行为者将受益于先进人工智能工具的广泛部署&#xff0c;然后他们的目标才能建立人…

在x64上构建智能家居(home assistant) (六) 安装Node-RED Companion Integration

点击HACS 搜索node-red 右侧单击后点击安装 安装完成后, 选设备

手机蓝牙在物联网超市中的应用

超市一站式购物已进入城市的千家万户。然而人们在选购时却采用直接翻阅商品的方式&#xff0c;既不方便又不卫生甚至大大缩短食品类商品保质期&#xff0c;也给超市商品管理造成很大难度。物联网(The Internet of things)基于射频识别(RFID)、红外感应等技术&#xff0c;把物品…

路由器常见故障分析及处理方法!

对当前的大多数网络来说&#xff0c;无论是实现网络互连还是访问Internet&#xff0c;路由器是不可或缺的。 由于路由器的重要性&#xff0c;对它的管理就成了维护人员的日常工作中重要的一部分&#xff0c;而路由器的故障分析和排除也是令许多维护人员极为困扰的问题之一。 路…

助力打造清洁环境,基于轻量级YOLOv8开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统

公共社区环境生活垃圾基本上是我们每个人每天几乎都无法避免的一个问题&#xff0c;公共环境下垃圾投放点都会有固定的值班时间&#xff0c;但是考虑到实际扔垃圾的无规律性&#xff0c;往往会出现在无人值守的时段内垃圾堆放垃圾桶溢出等问题&#xff0c;有些容易扩散的垃圾比…

【AI故事】灵感的源泉还是知识的盗窃?

灵感的源泉还是知识的盗窃&#xff1f; ——ChatGPT Robot在一个漆黑的夜晚&#xff0c;年轻的作家艾米丽坐在书桌前&#xff0c;手里紧握着一支笔&#xff0c;思绪万千。她一直在寻找创作的灵感&#xff0c;但却毫无头绪。 突然&#xff0c;她听到了一声巨响&#xff0c;仿佛…

pycharm连接虚拟机

前言&#xff1a;我们默认用户已经在虚拟机上安装好了spark等相关集群和生态&#xff0c;是可以在虚拟机中运行相关的操作&#xff0c;比如mapper&#xff0c;reducer操作&#xff0c;rdd&#xff0c;dataframe等等杂七杂八的东西的(主要我也没太明白)。本人是学校老师带着装的…

基于STM32和MQ-2传感器的物联网友好型烟雾报警系统

基于STM32和MQ-2传感器的物联网友好型烟雾报警系统是一种用于检测室内烟雾并及时报警的智能设备。本系统利用STM32微控制器作为主控制单元&#xff0c;通过MQ-2传感器实时监测室内烟雾浓度&#xff0c;并通过无线通信模块将数据传输到云端服务器&#xff0c;实现远程监控和报警…

nodejs微信小程序+python+PHP的旅游景点推荐系统-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…