题目
法1:单调栈[原版]
O(N)+O(N)
必须掌握算法!!!
class Solution {
public int largestRectangleArea(int[] heights) {
int n = heights.length, res = 0;
int[] leftMin = new int[n], rightMin = new int[n];
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < n; ++i) {
while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
stack.pop();
}
leftMin[i] = stack.isEmpty() ? -1 : stack.peek();
stack.push(i);
}
stack.clear();
for (int i = n - 1; i >= 0; --i) {
while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
stack.pop();
}
rightMin[i] = stack.isEmpty() ? n : stack.peek();
stack.push(i);
}
for (int i = 0; i < n; ++i) {
res = Math.max(res, (rightMin[i] - leftMin[i] - 1) * heights[i]);
}
return res;
}
}
法2:单调栈[优化版]
O(N)+O(N)
参考答案
class Solution {
public int largestRectangleArea(int[] heights) {
int n = heights.length, res = 0;
int[] leftMin = new int[n], rightMin = new int[n];
Arrays.fill(rightMin, n); // 一定注意这次需要初始化!!!
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < n; ++i) {
while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {
rightMin[stack.peek()] = i;
stack.pop();
}
leftMin[i] = stack.isEmpty() ? -1 : stack.peek();
stack.push(i);
}
for (int i = 0; i < n; ++i) {
res = Math.max(res, (rightMin[i] - leftMin[i] - 1) * heights[i]);
}
return res;
}
}