智能优化算法应用:基于人工大猩猩部队算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2025/1/31 3:06:04

智能优化算法应用:基于人工大猩猩部队算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于人工大猩猩部队算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.人工大猩猩部队算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用人工大猩猩部队算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.人工大猩猩部队算法

人工大猩猩部队算法原理请参考:https://blog.csdn.net/u011835903/article/details/123047637
人工大猩猩部队算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


人工大猩猩部队算法参数如下:

%% 设定人工大猩猩部队优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明人工大猩猩部队算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1329717.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分布式搜索elasticsearch概念

什么是elasticsearch? elasticsearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容 目录 elasticsearch的场景 elasticsearch的发展 Lucene篇 Elasticsearch篇 elasticsearch的安装 elasticsearch的场景 elasticsear…

python画图【00】Anaconda和Pycharm和jupyter的使用

①Anaconda ②Pycharm 一、Anaconda安装步骤 1、双击安装包,点击next。 2、点我同意I agree 3、 4、选择需要安装的位置,位置可根据自己情况安装到具体位置,但要记住安装到了哪里。然后点击next 5、可选择加入到环境变量,…

C# 判断两个时间段是否重叠

public static bool IsOverlap(DateTime startTime1, DateTime endTime1, DateTime startTime2, DateTime endTime2){// 判断两个时间段是否有重叠return !(endTime1 < startTime2 || startTime1 > endTime2);//根据德摩根定律&#xff0c;等效为&#xff1a;endTime1 &g…

如何通过蓝牙串口启动智能物联网?

1、低功耗蓝牙(BLE)介绍 BLE 技术是一种低成本、短距离、可互操作的鲁棒性无线技术&#xff0c;工作在免许可的 2,4 GHZ 工业、科学、医学(Industrial Scientific Medical&#xff0c;ISM)频段。BLE在设计之初便被定位为一种超低功耗(Ultra Low Power&#xff0c;ULP)无线技术&…

Apache Flink 进阶教程(六):Flink 作业执行深度解析

目录 前言 Flink 四层转化流程 Program 到 StreamGraph 的转化 StreamGraph 到 JobGraph 的转化 为什么要为每个 operator 生成 hash 值&#xff1f; 每个 operator 是怎样生成 hash 值的&#xff1f; JobGraph 到 ExexcutionGraph 以及物理执行计划 Flink Job 执行流程…

CSS自适应分辨率 amfe-flexible 和 postcss-pxtorem:Webpack5 升级后相关插件和配置更新说明

前言 项目对应的 webpack5 版本如下&#xff1a; npm i webpack5.89.0 -D npm i webpack-cli5.1.4 -D升级插件 说明一下&#xff0c;我更喜欢固定版本号&#xff0c;这样随机bug会少很多&#xff0c;更可控~ npm i postcss-loader6.1.1 -D npm i postcss-pxtorem6.0.0 -D配…

Redis单机、主从、哨兵、集群配置

单机配置启动 Redis安装 下载地址&#xff1a;Download | Redis 安装步骤&#xff1a; 1: 安装gcc编译器&#xff1a;yum install gcc 2: 将下载好的redis‐5.0.3.tar.gz文件放置在/usr/local文件夹下&#xff0c;并解压redis‐5.0.3.tar.gz文件 wget http://download.re…

编译原理----算符优先级的分析(自底向上)

自底向上分析的分类如下所示&#xff1a; 算符优先分析 算符优先分析只规定算符之间的优先关系&#xff0c;也就是只考虑终结符之间的优先关系。 &#xff08;一&#xff09;若有文法G&#xff0c;如果G没有形如A->..BC..的产生式&#xff0c;其中B和C为非终结符&#xff…

BigQuery 分区表简介和使用

大纲 什么是分区表 我们先看定义&#xff1a; 分区表是一种数据库表设计和管理技术&#xff0c;它将表中的数据划分为逻辑上的多个分区&#xff0c;每个分区包含一组特定的数据。每个分区都根据定义的分区键&#xff08;通常是一个列或字段&#xff09;的值进行分类&#xff…

vue3使用echarts漏斗,根据数据计算比例大小

需求&#xff1a;我们在开发过程中会遇到漏斗图的使用&#xff0c;如果用echarts里面自带的算法绘制渲染漏斗图时候&#xff0c;如果后端给的数据相差不大很接近时候&#xff0c;漏斗图渲染的结果不明显看不出来变化的。 优化之前的漏斗图&#xff1a; 优化之后的漏斗图&…

Flink 运行时[Runtime] 整体架构

一、基本组件栈 在Flink整个软件架构体系中&#xff0c;同样遵循着分层的架构设计理念&#xff0c;在降低系统耦合度的同时&#xff0c;也为上层用户构建Flink应用提供了丰富且友好的接口。从下图中可以看出整个Flink的架构体系基本上可以分为三层&#xff0c;由上往下依次是 …

BUUCTF-Linux Labs

Linux Labs 根据题目给出的内容&#xff0c;在kali中连接靶机&#xff0c;输入密码进入命令行模式 ls发现什么都没有&#xff0c;有可能进入到了一个空文件夹 cd .. 切换到上一层目录&#xff0c;ls查看此目录下的内容&#xff0c;发现flag.txt文件&#xff0c;查看文件是flag …

nodejs+vue+微信小程序+python+PHP医疗机构药品及耗材信息管理系统-计算机毕业设计推荐

为了帮助用户更好的了解和理解程序的开发流程与相关内容&#xff0c;本文将通过六个章节进行内容阐述。 第一章&#xff1a;描述了程序的开发背景&#xff0c;程序运用于现实生活的目的与意义&#xff0c;以及程序文档的结构安排信息&#xff1b; 第二章&#xff1a;描述了程序…

OpenCV与YOLO学习与研究指南

引言 OpenCV是一个开源的计算机视觉和机器学习软件库&#xff0c;而YOLO&#xff08;You Only Look Once&#xff09;是一个流行的实时对象检测系统。对于大学生和初学者而言&#xff0c;掌握这两项技术将大大提升他们在图像处理和机器视觉领域的能力。 基础知识储备 在深入…

【第七在线】数据分析与人工智能在商品计划中的应用

随着技术的不断进步&#xff0c;数据分析和人工智能&#xff08;AI&#xff09;已经成为了现代商品计划的关键组成部分。在服装行业&#xff0c;这两项技术正在帮助企业更好地理解市场需求、优化库存管理、提高生产效率和提供更好的客户体验。本文将深入探讨数据分析和人工智能…

无约束优化问题求解(3):共轭梯度法

目录 4. 共轭梯度法4.1 共轭方向4.2 共轭梯度法4.3 共轭梯度法的程序实现4.4 非二次函数的共轭梯度法 Reference 4. 共轭梯度法 4.1 共轭方向 最速下降法的线搜索采取精确线搜索时&#xff0c;由精确线搜索需要满足的条件&#xff1a;迭代点列 x k 1 x k α k d k x_{k1}…

CSS-SVG-环形进度条

线上代码地址 <div class"circular-progress-bar"><svg><circle class"circle-bg" /><circle class"circle-progress" style"stroke-dasharray: calc(2 * 3.1415 * var(--r) * (var(--percent) / 100)), 1000" …

【智慧办公】如何让智能会议室的电子标签实现远程、批量更新信息?Dusun物联网硬件网关让解决方案更具竞争力

近年来&#xff0c;为了减少办公耗能、节能环保、降本增效&#xff0c;越来越多的企业开始从传统的办公模式转向智慧办公。 以智能会议室为例&#xff0c;会议是企业业务中不可或缺的一部分&#xff0c;但在传统办公模式下&#xff0c;一来会议前行政人员需要提前准备会议材料…

【Amazon 实验③】Amazon WAF功能增强之追踪 Amazon WAF RequestID,排查误杀原因

文章目录 1. 方案介绍2. 架构图3. 操作演示 本实验将介绍如何利用 Amazon LambdaEdge&#xff0c;在 Amazon CloudFront 自定义错误页面 上展示每个由 Amazon WAF 返回的“403 Forbidden”错误的 Request ID。通过这个唯一的 WAF Request ID&#xff0c;网站运维工程师能够快速…

SuperMap iServer发布的ArcGIS REST 地图服务如何通过ArcGIS API加载

作者&#xff1a;yx 文章目录 一、发布服务二、代码加载三、结果展示 一、发布服务 SuperMap iServer支持将地图发布为ArcGIS REST地图服务&#xff0c;您可以在发布服务时直接勾选ArcGIS REST地图服务&#xff0c;如下图所示&#xff1a; 也可以在已发布的地图服务中&#x…