HashMap解读

news2024/11/15 10:36:38
1.简介

HashMap ,是一种散列表,用于存储 key-value 键值对的数据结构,一般翻译为“哈希表”,提供平均时间复杂度为 O(1) 的、基于 key 级别的 get/put 等操作。

2.哈希表结构

哈希表结构为数组,链表和红黑树。如图

img

哈希表渴望实现O1的查找时间复杂度,因此采用数组作为基础结构,通过哈希函数,计算key的哈希值,哈希表指示存储数组的下标,但是会出现不同key对应同一个哈希值,则称作哈希碰撞,采取拉链法解决,将同一下标的所有节点链接为链表。但是当链表长度过长,hash表便也失去了平均o1的特性。因此在一定条件下,链表将树化为红黑树,jdk1.7之前只有拉链,1.8加入红黑树特性。

3.什么是Hash

Hash也称散列、哈希,对应的英文都是Hash。基本原理就是把任意长度的输入,通过Hash算法变成固定长度的输出。这个映射的规则就是对应的Hash算法,而原始数据映射后的二进制串就是哈希值。

  • 1.从Hash值不可以反向推导出原始数据
  • 2.输入数据的微小变化会得到完全不同的Hash值相同的数据一定可以得到相同的值
  • 3.哈希算法的执行效率要高效,长的文本也能快速计算Hash值
  • 4.Hash算法的冲突概率要小

由于Hash原理就是将输入空间映射成Hash空间,而Hash空间远远小于输入空间,根据抽屉原理,一定存在不同输出有相同的映射

抽屉原理: 桌子上有10个苹果,将其放在9个抽屉里面,那必有一个抽屉不少于2个苹果

4.HashMap源码理解

HashMap结构

内部类

  • 1)Node:存储基本的哈希值和键值对
    Node结构

     static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
     ....
     }
    
  • 2)KeySet:所有Key的哈希集合

    ​ 与node数组共享key,对key的操作是互相影响的。并且只支持删除操作

  • 3)Values: :所有value的哈希集合,同理keySet

  • 4)EntrySet:所有node的哈希集合,同理keySet

  • 5)HashIterator: 迭代器,遍历node使用

  • 6)KeyIterator: 迭代器实现

  • 7)EntryIterator: 迭代器实现

  • 8)ValueIterator: 迭代器实现

  • 9)HashMapSpiterator :切割node数组,供并行使用

  • 10)KeySpiterator:切割器实现

  • 11)ValueSpiterator:切割器实现

  • 12)EntrySpiterator: 切割器实现

  • 13)TreeNode:红黑树node节点

成员变量

	//默认初始化容量为16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
   	//最大的数组容量为2的30次方
    static final int MAXIMUM_CAPACITY = 1 << 30;
   	//默认负载系数
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //链表长度树化为红黑树的阈值
    static final int TREEIFY_THRESHOLD = 8;
    //红黑树退化为链表的阈值
    static final int UNTREEIFY_THRESHOLD = 6;
   //最小树化的节点数量阈值
    static final int MIN_TREEIFY_CAPACITY = 64;
 	//存放节点的数组,懒加载创建
    transient  Node<K,V>[] table;
    //key_value哈希集合,懒加载创建
    transient Set<Map.Entry<K,V>> entrySet;
    //数组实际节点数量
    transient int size;
   //node节点的增加删除次数,不包括更新
    transient int modCount;
    //下次进行扩容的阈值 容量*负载因子
    int threshold;
    //负载因子
    final float loadFactor;

成员方法,挑体现核心思想的方法

  • 初始化

    image-20230101135621581

  • 查找node

    image-20230101135719248

  • 插入/更新

    image-20230101140155477

  • 删除

    image-20230101140014716

下面是我阅读源码添加的注释,注释待补充完整

package my;

import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.*;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;

public class HashMap<K,V> extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable {

    private static final long serialVersionUID = 362498820763181265L;
    //默认初始化容量为16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

   //最大的数组容量为2的30次方
    static final int MAXIMUM_CAPACITY = 1 << 30;

   //默认负载系数
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    //链表长度树化为红黑树的阈值
    static final int TREEIFY_THRESHOLD = 8;

    //红黑树退化为链表的阈值
    static final int UNTREEIFY_THRESHOLD = 6;

   //最小树化的节点数量阈值
    static final int MIN_TREEIFY_CAPACITY = 64;

    //基础节点 存放key,value,hash,下一个node指针
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value,  Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                        Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

    //静态方法

   //计算key的哈希值
    /*
    how: key的hash值的前16位异或后16位
    why: 通过混合哈希码的高位和低位,使得hash值更加分散,这种做法称作扰动
    */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    /**
     * Returns x's Class if it is of the form "class C implements
     * Comparable<C>", else null.
     */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                            ((p = (ParameterizedType)t).getRawType() ==
                                    Comparable.class) &&
                            (as = p.getActualTypeArguments()) != null &&
                            as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    /**
     * Returns k.compareTo(x) if x matches kc (k's screened comparable
     * class), else 0.
     */
    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

    //do: 获取一个恰好大于输入值的2的次方数,在小于最大数组容量下
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /* ---------------- 成员 -------------- */

    //存放节点的数组,懒加载创建
    transient  Node<K,V>[] table;

    //key_value哈希集合,懒加载创建
    transient Set<Map.Entry<K,V>> entrySet;

    //数组实际节点数量
    transient int size;

   //node节点的增加删除次数,不包括更新
    transient int modCount;

    //下次进行扩容的阈值 容量*负载因子
    int threshold;

    //负载因子
    final float loadFactor;

    /* ---------------- 对外操作 -------------- */

    //输出初始化容量,负载因子进行 初始化 容量,负载因子
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)//容量非法
            throw new IllegalArgumentException("Illegal initial capacity: " +
                    initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)//最大容量
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))//负载因子非法
            throw new IllegalArgumentException("Illegal load factor: " +
                    loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);//2的次方容量
    }

    //调用 HashMap(int initialCapacity, float loadFactor)
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

   //初始化负载因子为0.75
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // 所有其他的值都为默认
    }

   //创建特定的map
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    //实现Map.putAll和Map构造函数
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                        (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

    //返回node节点数量
    public int size() {
        return size;
    }

   //node节点是否等于0
    public boolean isEmpty() {
        return size == 0;
    }

    //通过key获取value,如果不存在则返回为空,调用getNode(int hash, Object key)实现
    public V get(Object key) {
         Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    //通过hash值找到数组下标,通过key找到node
    final  Node<K,V> getNode(int hash, Object key) {
        //变量解释
        //tab 被赋值为node数组
        //first 被赋值为下标处第一个节点
        //n 节点数量
        //k first.key
         Node<K,V>[] tab;  Node<K,V> first, e; int n; K k;
         //数组不为空 & 长度不为0 & 第一个节点不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash &&
                    ((k = first.key) == key || (key != null && key.equals(k))))
                return first;//检查第一个节点是否为寻找值
            if ((e = first.next) != null) {
                if (first instanceof  TreeNode)
                    //红黑树寻找
                    return (( TreeNode<K,V>)first).getTreeNode(hash, key);
                //链表寻找
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        //找不到
        return null;
    }

    //是否包含key
    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

   //插入键值对。如果是替换则返回上一个value值,否则返回为null
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * 插入键值对
     * @param onlyIfAbsent 如果为true,则不更改现有值
     * @param evict 如果为false,则表处于创建模式。
     * 如果是替换则返回上一个value值,否则返回为null
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        //变量解释
        //tab 被赋值为node数组
        //first 被赋值为下标处第一个节点
        //n 节点数量
        //i 下标
         Node<K,V>[] tab;  Node<K,V> p; int n, i;

        if ((tab = table) == null || (n = tab.length) == 0)
            //懒加载创建node数组
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            //如果下标处没有节点,直接插入即可
            tab[i] = newNode(hash, key, value, null);
        else {
            //变量解释
            //e 被替换的节点
            //k 当前节点的key
             Node<K,V> e; K k;
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof  TreeNode)
                //红黑树替换
                e = (( TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //链表替换
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) //节点数量是否达到树化阈值
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //更新
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)//达到扩容阈值
            resize();
        afterNodeInsertion(evict);//插入后的操作,空实现
        return null;//非覆盖的返回值
    }

    //初始化节点数组或者扩容数组使得新数组容量的两倍(容量,阈值)
    final  Node<K,V>[] resize() {
        //变量解释
        //oldTab 被赋值为node原数组
        //oldCap 被赋值为原容量
        //oldThr  原扩容阈值
        //newCap 新容量 newThr 新扩容阈值
         Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            //非空数组
            if (oldCap >= MAXIMUM_CAPACITY) {
                //如果容量已经最大,那么设置阈值为int的最大值后不再处理
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                //容量增大为原来的两倍,如果原来的容量已经大于默认容量(16),那么扩容阈值也增大原来的两倍
                newThr = oldThr << 1;
        }
        //空数组
        else if (oldThr > 0) //容量变为原来的扩容阈值
            newCap = oldThr;
        else {
            //阈值为0表示使用默认值
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //对应352
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                    (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
         Node<K,V>[] newTab = ( Node<K,V>[])new  Node[newCap];
        table = newTab;
        if (oldTab != null) {
            //遍历每一个桶
            for (int j = 0; j < oldCap; ++j) {
                 Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;//GC
                    if (e.next == null)
                        //一个节点直接计算hash值域插入
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof  TreeNode)
                        //红黑树扩容
                        (( TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        //链表扩容
                        //由于hash计算机制,同一下标的节点在新节点hash计算得到结果的下标 只可能保持或者移动向右移动扩大原容量位移
                         Node<K,V> loHead = null, loTail = null;
                         Node<K,V> hiHead = null, hiTail = null;
                         Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

   //hash对应桶树化
    final void treeifyBin( Node<K,V>[] tab, int hash) {
        int n, index;  Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
             TreeNode<K,V> hd = null, tl = null;
            do {
                 TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

    //map合并
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

    //删除
    public V remove(Object key) {
         Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
    }

    /**
     * @param value matchValue为true有效
     * @param matchValue 是否需要匹配value
     * @param movable 如果为false,则删除时不移动其他节点
     */
    //删除节点,并且返回
    final  Node<K,V> removeNode(int hash, Object key, Object value,
                                                 boolean matchValue, boolean movable) {
        //变量解释
        //tab node数组
        //p 下标处第一个节点
        //n node数组长度
        //index 下标
         Node<K,V>[] tab;  Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
             Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                //检查第一个节点
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof  TreeNode)
                    //红黑树删除
                    node = (( TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    //链表删除
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key ||
                                        (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //如果节点存在,则执行删除
            if (node != null && (!matchValue || (v = node.value) == value ||
                    (value != null && value.equals(v)))) {
                if (node instanceof  TreeNode)
                    (( TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }


     //清空所有节点
    public void clear() {
         Node<K,V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

    //检查map中是否有value
    //没看到红黑树的遍历为啥?
    public boolean containsValue(Object value) {
         Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for ( Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                            (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }


    //返回所有key
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new  KeySet();
            keySet = ks;
        }
        return ks;
    }
    //可以对key进行删除,不支持增加。map集合进行增加删除node时,迭代操作将不可执行,显示为未定义
    final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        //todo 为什么这个clear这样做
        public final void clear()               {  this.clear(); }
        //返回key的迭代器
        public final Iterator<K> iterator()     { return new  KeyIterator(); }

        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        //todo Spliterator
        public final Spliterator<K> spliterator() {
            return new  KeySpliterator<>( this, 0, -1, 0, 0);
        }
        //迭代遍历
        public final void forEach(Consumer<? super K> action) {
             Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for ( Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key);
                }
                //检测map是否修改了map的keyset集合
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

   //返回所有value集合
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new  Values();
            values = vs;
        }
        return vs;
    }
    //如果有任意节点的value值在迭代时进行修改,那么迭代将失败
    final class Values extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               {  this.clear(); }
        public final Iterator<V> iterator()     { return new  ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return new  ValueSpliterator<>( this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super V> action) {
             Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for ( Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    //返回所有node的set集合,懒加载
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new  EntrySet()) : es;
    }

    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               {  this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new  EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
             Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new  EntrySpliterator<>( this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
             Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for ( Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    // jdk8重写方法

    //获取某个key的值,无则返回默认值
    @Override
    public V getOrDefault(Object key, V defaultValue) {
         Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
    }

    //插入值,需要key值不存在,也就是不进行覆盖操作
    @Override
    public V putIfAbsent(K key, V value) {
        return putVal(hash(key), key, value, true, true);
    }
    //删除节点,key-value都匹配
    @Override
    public boolean remove(Object key, Object value) {
        return removeNode(hash(key), key, value, true, true) != null;
    }
    //覆盖key-value都匹配
    @Override
    public boolean replace(K key, V oldValue, V newValue) {
         Node<K,V> e; V v;
        if ((e = getNode(hash(key), key)) != null &&
                ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
            e.value = newValue;
            //空实现
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

    //覆盖匹配key
    @Override
    public V replace(K key, V value) {
         Node<K,V> e;
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            //空实现
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

    //如果 key 对应的 value 不存在,则使用获取 mappingFunction 重新计算后的值,并保存为该 key 的 value,否则返回 value。
    @Override
    public V computeIfAbsent(K key,
                             Function<? super K, ? extends V> mappingFunction) {
        if (mappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
         Node<K,V>[] tab;  Node<K,V> first; int n, i;
        int binCount = 0;
         TreeNode<K,V> t = null;
         Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof  TreeNode)
                old = (t = ( TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                 Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
            V oldValue;
            if (old != null && (oldValue = old.value) != null) {
                afterNodeAccess(old);
                return oldValue;
            }
        }
        V v = mappingFunction.apply(key);
        if (v == null) {
            return null;
        } else if (old != null) {
            old.value = v;
            afterNodeAccess(old);
            return v;
        }
        else if (t != null)
            t.putTreeVal(this, tab, hash, key, v);
        else {
            tab[i] = newNode(hash, key, v, first);
            if (binCount >= TREEIFY_THRESHOLD - 1)
                treeifyBin(tab, hash);
        }
        ++modCount;
        ++size;
        afterNodeInsertion(true);
        return v;
    }
    //如果 key 对应的 value 不存在,则返回该 null,如果存在,则返回通过 remappingFunction 重新计算后的值。
    public V computeIfPresent(K key,
                              BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
         Node<K,V> e; V oldValue;
        int hash = hash(key);
        if ((e = getNode(hash, key)) != null &&
                (oldValue = e.value) != null) {
            V v = remappingFunction.apply(key, oldValue);
            if (v != null) {
                e.value = v;
                afterNodeAccess(e);
                return v;
            }
            else
                removeNode(hash, key, null, false, true);
        }
        return null;
    }

    //对 hashMap 中指定 key 的值进行重新计算。
    @Override
    public V compute(K key,
                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
         Node<K,V>[] tab;  Node<K,V> first; int n, i;
        int binCount = 0;
         TreeNode<K,V> t = null;
         Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof  TreeNode)
                old = (t = ( TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                 Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        V oldValue = (old == null) ? null : old.value;
        V v = remappingFunction.apply(key, oldValue);
        if (old != null) {
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
                removeNode(hash, key, null, false, true);
        }
        else if (v != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, v);
            else {
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return v;
    }
    //先判断指定的 key 是否存在,如果不存在,则添加键值对到 hashMap 中。
    //如果 key 对应的 value 不存在,则返回该 value 值,如果存在,则返回通过 remappingFunction 重新计算后的值。
    @Override
    public V merge(K key, V value,
                   BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        if (value == null)
            throw new NullPointerException();
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
         Node<K,V>[] tab;  Node<K,V> first; int n, i;
        int binCount = 0;
         TreeNode<K,V> t = null;
         Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof  TreeNode)
                old = (t = ( TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                 Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        if (old != null) {
            V v;
            if (old.value != null)
                v = remappingFunction.apply(old.value, value);
            else
                v = value;
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
                removeNode(hash, key, null, false, true);
            return v;
        }
        if (value != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, value);
            else {
                tab[i] = newNode(hash, key, value, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return value;
    }

    //迭代
    @Override
    public void forEach(BiConsumer<? super K, ? super V> action) {
         Node<K,V>[] tab;
        if (action == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for ( Node<K,V> e = tab[i]; e != null; e = e.next)
                    action.accept(e.key, e.value);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    //全部替换,使用传入的函数
    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
         Node<K,V>[] tab;
        if (function == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for ( Node<K,V> e = tab[i]; e != null; e = e.next) {
                    e.value = function.apply(e.key, e.value);
                }
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    /* ----------------------克隆和序列化---------------------------- */


   //浅克隆,键值对没有被可能,todo 仍然共享数据
    @SuppressWarnings("unchecked")
    @Override
    public Object clone() {
        java.util.HashMap<K,V> result;
        try {
            result = (java.util.HashMap<K,V>)super.clone();
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
        result.reinitialize();
        result.putMapEntries(this, false);
        return result;
    }

    //序列化HashSet时也使用这些方法
    final float loadFactor() { return loadFactor; }
    final int capacity() {
        return (table != null) ? table.length :
                (threshold > 0) ? threshold :
                        DEFAULT_INITIAL_CAPACITY;
    }

    //将HashMap实例的状态保存到流中(即序列化)。无顺序
    private void writeObject(java.io.ObjectOutputStream s)
            throws IOException {
        int buckets = capacity();
        //阈值,负载因子和任何内容
        s.defaultWriteObject();
        s.writeInt(buckets);
        s.writeInt(size);
        internalWriteEntries(s);
    }

    //从流中重新构造HashMap实例(即反序列化)。
    private void readObject(java.io.ObjectInputStream s)
            throws IOException, ClassNotFoundException {
        //阈值,负载因子和任何内容
        s.defaultReadObject();
        reinitialize();
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new InvalidObjectException("Illegal load factor: " +
                    loadFactor);
        s.readInt();                // Read and ignore number of buckets
        int mappings = s.readInt(); // Read number of mappings (size)
        if (mappings < 0)
            throw new InvalidObjectException("Illegal mappings count: " +
                    mappings);
        else if (mappings > 0) { // (if zero, use defaults)
            // Size the table using given load factor only if within
            // range of 0.25...4.0
            float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
            float fc = (float)mappings / lf + 1.0f;
            int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                    DEFAULT_INITIAL_CAPACITY :
                    (fc >= MAXIMUM_CAPACITY) ?
                            MAXIMUM_CAPACITY :
                            tableSizeFor((int)fc));
            float ft = (float)cap * lf;
            threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                    (int)ft : Integer.MAX_VALUE);
            @SuppressWarnings({"rawtypes","unchecked"})
             Node<K,V>[] tab = ( Node<K,V>[])new  Node[cap];
            table = tab;

            // Read the keys and values, and put the mappings in the HashMap
            for (int i = 0; i < mappings; i++) {
                @SuppressWarnings("unchecked")
                K key = (K) s.readObject();
                @SuppressWarnings("unchecked")
                V value = (V) s.readObject();
                putVal(hash(key), key, value, false, false);
            }
        }
    }

    /* ------------------------迭代器------------------------- */

    abstract class HashIterator {
         Node<K,V> next;        // 下一个实体
         Node<K,V> current;     // 现在的实体
        int expectedModCount;  // 用于快速失败
        int index;             // 当前下标

        HashIterator() {
            expectedModCount = modCount;
             Node<K,V>[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // advance to first entry
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        final  Node<K,V> nextNode() {
             Node<K,V>[] t;
             Node<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }

        public final void remove() {
             Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }

    final class KeyIterator extends  HashIterator
            implements Iterator<K> {
        public final K next() { return nextNode().key; }
    }

    final class ValueIterator extends  HashIterator
            implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }

    final class EntryIterator extends  HashIterator
            implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }

    /* ---------------------切割卡槽,并行使用----------------------------- */
    // 切割器

    static class HashMapSpliterator<K,V> {
        final java.util.HashMap<K,V> map;
         Node<K,V> current;          // current node
        int index;                  // current index, modified on advance/split
        int fence;                  // one past last index
        int est;                    // size estimate
        int expectedModCount;       // for comodification checks

        HashMapSpliterator(java.util.HashMap<K,V> m, int origin,
                           int fence, int est,
                           int expectedModCount) {
            this.map = m;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                java.util.HashMap<K,V> m = map;
                est = m.size;
                expectedModCount = m.modCount;
                 Node<K,V>[] tab = m.table;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            return hi;
        }

        public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }

    static final class KeySpliterator<K,V>
            extends  HashMapSpliterator<K,V>
            implements Spliterator<K> {
        KeySpliterator(java.util.HashMap<K,V> m, int origin, int fence, int est,
                       int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public  KeySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new  KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }

        public void forEachRemaining(Consumer<? super K> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            java.util.HashMap<K,V> m = map;
             Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                 Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.key);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super K> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
             Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        K k = current.key;
                        current = current.next;
                        action.accept(k);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT;
        }
    }

    static final class ValueSpliterator<K,V>
            extends  HashMapSpliterator<K,V>
            implements Spliterator<V> {
        ValueSpliterator(java.util.HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public  ValueSpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new  ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            java.util.HashMap<K,V> m = map;
             Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                 Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.value);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
             Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        V v = current.value;
                        current = current.next;
                        action.accept(v);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
        }
    }

    static final class EntrySpliterator<K,V>
            extends  HashMapSpliterator<K,V>
            implements Spliterator<Map.Entry<K,V>> {
        EntrySpliterator(java.util.HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public  EntrySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new  EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }

        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            java.util.HashMap<K,V> m = map;
             Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                 Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
             Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                         Node<K,V> e = current;
                        current = current.next;
                        action.accept(e);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT;
        }
    }

    /* -------------------LinkedHashMap支持-------------------------- */


    /*
     *  以下方法旨在
        被LinkedHashMap覆盖,但不被任何其他子类覆盖。
        几乎所有其他内部方法都受到包保护
        但声明为final,因此可以由LinkedHashMap、view classes和HashSet。
     */


    // Create a regular (non-tree) node
     Node<K,V> newNode(int hash, K key, V value,  Node<K,V> next) {
        return new  Node<>(hash, key, value, next);
    }

    // For conversion from TreeNodes to plain nodes
     Node<K,V> replacementNode( Node<K,V> p,  Node<K,V> next) {
        return new  Node<>(p.hash, p.key, p.value, next);
    }

    // Create a tree bin node
     TreeNode<K,V> newTreeNode(int hash, K key, V value,  Node<K,V> next) {
        return new  TreeNode<>(hash, key, value, next);
    }

    // For treeifyBin
     TreeNode<K,V> replacementTreeNode( Node<K,V> p,  Node<K,V> next) {
        return new  TreeNode<>(p.hash, p.key, p.value, next);
    }

    /**
     * Reset to initial default state.  Called by clone and readObject.
     */
    void reinitialize() {
        table = null;
        entrySet = null;
        keySet = null;
        values = null;
        modCount = 0;
        threshold = 0;
        size = 0;
    }

    // Callbacks to allow LinkedHashMap post-actions
    void afterNodeAccess( Node<K,V> p) { }
    void afterNodeInsertion(boolean evict) { }
    void afterNodeRemoval( Node<K,V> p) { }

    // Called only from writeObject, to ensure compatible ordering.
    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
         Node<K,V>[] tab;
        if (size > 0 && (tab = table) != null) {
            for (int i = 0; i < tab.length; ++i) {
                for ( Node<K,V> e = tab[i]; e != null; e = e.next) {
                    s.writeObject(e.key);
                    s.writeObject(e.value);
                }
            }
        }
    }

    /* -------------------------红黑树--------------------------- */

    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
         TreeNode<K,V> parent;  // red-black tree links
         TreeNode<K,V> left;
         TreeNode<K,V> right;
         TreeNode<K,V> prev;    // needed to unlink next upon deletion
         boolean red;
        TreeNode(int hash, K key, V val,  Node<K,V> next) {
            super(hash, key, val, next);
        }

        //返回包含调用节点的树的根。
        final  TreeNode<K,V> root() {
            for ( TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /**
         * Ensures that the given root is the first node of its bin.
         */
        static <K,V> void moveRootToFront( Node<K,V>[] tab,  TreeNode<K,V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                 TreeNode<K,V> first = ( TreeNode<K,V>)tab[index];
                if (root != first) {
                     Node<K,V> rn;
                    tab[index] = root;
                     TreeNode<K,V> rp = root.prev;
                    if ((rn = root.next) != null)
                        (( TreeNode<K,V>)rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         */
        final  TreeNode<K,V> find(int h, Object k, Class<?> kc) {
             TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                 TreeNode<K,V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                        (kc = comparableClassFor(k)) != null) &&
                        (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Calls find for root node.
         */
        final  TreeNode<K,V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don't require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                    (d = a.getClass().getName().
                            compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                        -1 : 1);
            return d;
        }

        /**
         * Forms tree of the nodes linked from this node.
         * @return root of tree
         */
        final void treeify( Node<K,V>[] tab) {
             TreeNode<K,V> root = null;
            for ( TreeNode<K,V> x = this, next; x != null; x = next) {
                next = ( TreeNode<K,V>)x.next;
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for ( TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                (kc = comparableClassFor(k)) == null) ||
                                (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                         TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final  Node<K,V> untreeify(java.util.HashMap<K,V> map) {
             Node<K,V> hd = null, tl = null;
            for ( Node<K,V> q = this; q != null; q = q.next) {
                 Node<K,V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /**
         * Tree version of putVal.
         */
        final  TreeNode<K,V> putTreeVal(java.util.HashMap<K,V> map,  Node<K,V>[] tab,
                                                         int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
             TreeNode<K,V> root = (parent != null) ? root() : this;
            for ( TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                        (kc = comparableClassFor(k)) == null) ||
                        (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                         TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                                (q = ch.find(h, k, kc)) != null) ||
                                ((ch = p.right) != null &&
                                        (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                 TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                     Node<K,V> xpn = xp.next;
                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        (( TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        final void removeTreeNode(java.util.HashMap<K,V> map,  Node<K,V>[] tab,
                                  boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
             TreeNode<K,V> first = ( TreeNode<K,V>)tab[index], root = first, rl;
             TreeNode<K,V> succ = ( TreeNode<K,V>)next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null || root.right == null ||
                    (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
             TreeNode<K,V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                 TreeNode<K,V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                 TreeNode<K,V> sr = s.right;
                 TreeNode<K,V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                     TreeNode<K,V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                 TreeNode<K,V> pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

             TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {  // detach
                 TreeNode<K,V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(java.util.HashMap<K,V> map,  Node<K,V>[] tab, int index, int bit) {
             TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
             TreeNode<K,V> loHead = null, loTail = null;
             TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for ( TreeNode<K,V> e = b, next; e != null; e = next) {
                next = ( TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR

        static <K,V>  TreeNode<K,V> rotateLeft( TreeNode<K,V> root,
                                                                 TreeNode<K,V> p) {
             TreeNode<K,V> r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        static <K,V>  TreeNode<K,V> rotateRight( TreeNode<K,V> root,
                                                                  TreeNode<K,V> p) {
             TreeNode<K,V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        static <K,V>  TreeNode<K,V> balanceInsertion( TreeNode<K,V> root,
                                                                       TreeNode<K,V> x) {
            x.red = true;
            for ( TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
                else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        static <K,V>  TreeNode<K,V> balanceDeletion( TreeNode<K,V> root,
                                                                      TreeNode<K,V> x) {
            for ( TreeNode<K,V> xp, xpl, xpr;;)  {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (x.red) {
                    x.red = false;
                    return root;
                }
                else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                                (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        }
                        else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                        null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                }
                else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                                (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        }
                        else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                        null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * Recursive invariant check
         */
        static <K,V> boolean checkInvariants( TreeNode<K,V> t) {
             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                    tb = t.prev, tn = ( TreeNode<K,V>)t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }

}

参考资料

https://www.bilibili.com/video/BV1LJ411W7dP/?p=8&spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=f6a308f875296edd5f437b68e0c3253a

https://www.runoob.com/java/java-hashmap.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/132940.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

已解决+ FullyQualifiedErrorId : UnauthorizedAccess

已解决无法加载文件 E:\day_01\Scripts\activate.ps1&#xff0c;因为在此系统上禁止运行脚本。有关详细信息&#xff0c;请参阅 https:/go.microsoft.com/fwlink/?LinkID135170 中的about_Execution_Policies。 CategoryInfo: SecurityError: &#xff08;:&#xff09; [ ]…

Spring Bean的配置详解

目录 1.bean基础配置 例如&#xff1a;配置UserDaolmpl由Spring容器负责管理 2.Spring开发中主要是对Bean的配置&#xff0c; Bean的常用配置一览如下&#xff1a; 3.bean的别名配置 4.bean作用范围配置 5.bean的实例化 6.bean生命周期 7.Spring的get方法 8.Bean的延迟加载…

57. 数据增广 / 图像增广 代码实现

1. 图像增广 在对常用图像增广方法的探索时&#xff0c;我们将使用下面这个尺寸为400 x 500的图像作为示例。 从github上把img下载下来后&#xff0c;放到同一目录下&#xff1a; d2l.set_figsize() img d2l.Image.open(./img/cat1.jpg) d2l.plt.imshow(img);大多数图像增广…

数字通信系统和模拟通信系统的简单介绍

关于数字和模拟&#xff0c;比较形象的一个对比如下图所示。 模拟系统就好比传统的钟表&#xff0c;秒钟一直在走&#xff0c;也就是连续之意&#xff1b;而数字系统相当于数字表&#xff0c;“ &#xff1a;”的闪烁相当于二进制的 0 和 1&#xff0c;有离散之意。 模拟通信系…

a billion ways to grasp

https://blog.csdn.net/weixin_26752765/article/details/108132661 翻译自 https://darshanhegde.github.io/blog/2020/heuristics-for-robotic-grasping/ 讲述了各种抓取 https://rpal.cse.usf.edu/competition_iros2021/ Grasping is one of the fundamental subtask of a r…

ECCV 2022|DynamicDepth:动态场景下的多帧自监督深度估计

&#x1f3c6;前言&#xff1a;本文别名DynamicDepth (github),如本文的名字所示&#xff0c;本文着重处理的就是动态场景下的多帧自监督深度估计问题。因为MVS在动态场景下会失效&#xff0c;所以在动态区域的多帧深度并不可靠。现在的已有方法例如ManyDepth&#xff0c;利用t…

老王linux面试题汇总

1.统计一个网站的访问量&#xff0c;统计网站访问次数最多的前几名的IP地址。 2.取两个文件的相同和不同行 3.分别创建10个账号&#xff08;user1-user10&#xff09; 5.独立磁盘冗余阵列RAID O,1,5,6,10,01级别区别 5.1磁盘利用率 5.2最少几盘磁盘实现 5.3容错性&#xff0c;…

(十二)大白话对于VARCHAR这种变长字段,在磁盘上到底是如何存储的?

文章目录 1、一行数据在磁盘上存储的时候,包含哪些东西?2、变长字段在磁盘中是怎么存储的?3、存储在磁盘文件里的变长字段,为什么难以读取?4、引入变长字段的长度列表,解决一行数据的读取问题5、引入变长字段长度列表后,如何解决变长字段的读取问题?6、如果有多个变长字…

蒙特卡洛积分、重要性采样、低差异序列

渲染公式 渲染的目标在于计算周围环境的光线有多少从表面像素点反射到相机视口中。要计算总的反射光&#xff0c;每个入射方向的贡献&#xff0c;必须将他们在半球上相加&#xff1a; 为入射光线 与法线 的夹角,为方便计算可以使用法线向量和入射向量&#xff08;单位化&…

Linux|科普扫盲帖|配置网络软件源---阿里云镜像仓库服务使用(centos,Ubuntu)

前言&#xff1a; 部署搭建各种环境&#xff0c;例如&#xff0c;集群环境&#xff0c;编译环境&#xff0c;测试环境&#xff0c;桌面环境&#xff0c;lnmp环境等等以及修复各种各样的漏洞&#xff0c;基本是使用本地仓库就可以完成的&#xff0c;但本地仓库有一个比较致命的…

深入理解TDNN(Time Delay Neural Network)——兼谈x-vector网络结构

概述 TDNN&#xff08;Time Delay Neural Network&#xff0c;时延神经网络&#xff09;是用于处理序列数据的&#xff0c;比如&#xff1a;一段语音、一段文本将TDNN和统计池化&#xff08;Statistics Pooling&#xff09;结合起来&#xff0c;正如x-vector的网络结构&#x…

x86_64架构的VINS-fusion-GPU部署

x86_64架构的VINS-fusion-GPU部署 1. 环境配置&#xff08;Ubuntu 18.04&#xff09; &#xff08;0&#xff09;CUDA 10.2 安装 由于笔记本的GPU太老&#xff08;GeForce 840M&#xff09;&#xff0c;只能使用较低版本的 CUDA&#xff0c;但是也能有个好处就是能够同时兼顾…

Linux TCP 拥塞正反馈 bad case

前置知识&#xff0c;TCP thin stream&#xff0c;参见&#xff1a; 该文档中搜索 tcp_thin_linear_timeoutsTCP-thin-stream 看图说话&#xff1a; 参见 tcp_retransmit_timer 函数&#xff0c;着重看下面段落&#xff1a; if (sk->sk_state TCP_ESTABLISHED &&am…

视觉SLAM学习路线

导师让我了解SLAM&#xff0c;SLAM原本是比较小众的方向&#xff0c;最近自动驾驶火起来&#xff0c;做这个SLAM的人也多了&#xff0c;反过来也会推动机器人感知的发展。希望未来学成的时候&#xff0c;能赶上机器人大规模普及&#xff0c;就业一片蓝海。学SLAM方向跟motion p…

RabbitMQ延迟列队的使用

目录 1. 延迟队列使用场景 2. RabbitMQ中的延迟队列实现思路 3. 实现示例 3。运行项目测试 1. 延迟队列使用场景 延迟队列一般可用于具有时间限制的任务&#xff0c;例如&#xff1a;限时优惠&#xff0c;超时的订单处理等。 对于这种场景&#xff0c;传统的处理方式是任…

Ceph: ceph基础知识

ceph基础知识 一、基础概念 ceph官方文档 http://docs.ceph.org.cn/ ceph中文开源社区 http://ceph.org.cn/ 1、概述 Ceph是可靠的、可扩展的、统一的、开源分布式的存储系统。 Ceph是一个统一的分布式存储系统&#xff0c;设计初衷是提供较好的性能、可靠性和可扩展性。 C…

Python基础知识(一)

目录 输入输出函数 输入函数&#xff1a;input() 输出函数&#xff1a;print() 算术运算符 关系运算符 逻辑运算符 变量 1.命名规则 2.变量类型 3.动态类型特性 输入输出函数 输入函数&#xff1a;input() name input("请输入&#xff1a;") print(nam…

第二证券|北向资金全年净买入约900亿元 哪些行业和个股成“香饽饽”

2022年A股收官。回顾这一年&#xff0c;面临复杂严峻的国内外环境&#xff0c;A股商场推动完善多元融资支撑机制&#xff0c;加大了对实体经济的金融支撑力度&#xff0c;为中国经济V形复苏做出了奉献。这一年&#xff0c;A股IPO融资规划创出历史新高&#xff0c;存量上市公司打…

驱动的并发和竞争

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录前言一、什么是并发&#xff1f;并发并行并发并行模式二、什么是竞争三、如何解决竞争1、原子操作整形原子操作&#xff1a;原子位操作2.自旋锁3.信号量4.互斥锁5.如…

mysql批量更新方法

mysql批量更新方法 实验mysql版本为5.7.20 隔离级别为rr&#xff0c;加锁场景的问题在mysql8.0.18中为复现 方法一 replace into 批量更新 原理&#xff1a;replace into table (col1,col2) values (x1,x2), 操作本质是对重复的记录先delete 后insert 缺点&#xff1a;1、如…