Flink 状态管理与容错机制(CheckPoint SavePoint)的关系

news2024/11/24 15:11:03

一、什么是状态

无状态计算的例子: 例如一个加法算子,第一次输入2+3=5那么以后我多次数据2+3的时候得到的结果都是5。得出的结论就是,相同的输入都会得到相同的结果,与次数无关。
有状态计算的例子: 访问量的统计,我们都知道Nginx的访问日志一个请求一条日志,基于此我们就可以统计访问量。如下,/api/a这个url第一此访问的时候,返回的结果就是 count1,但当第二次访问的时候,返回的结果变成了2。为什么Flink知道之前已经处理过一次 hello world,这就是state发挥作用了,这里是被称为keyed state存储了之前需要统计的数据,keyby接口的调用会创建keyed streamkey进行划分,这是使用keyed state的前提。得出的结论就是,相同的输入得到不同的结果,与次数有关。这就是有状态的数据。
[点击并拖拽以移动] ​

什么场景下会大量使用到这种状态数据啦?简单举几个例子:
【1】去重的需求中,比如说我们只想知道这100个同事都属于那几个部门的等等。
【2】窗口计算,已进入未触发的数据。比如,我们一分钟统计一次,1-2之间的1.5这个时候的数据对于2来说就是一个有状态的数据,因为2的结果与1.5有关。
【3】机器学习/深度学习,训练的模型及参数。这对于机器学习的同学深入感触。比如,第一次输入hello,机器会给我一个反馈,那么下次会基于这个反馈做进一步的学习处理。那么上一步的结果对于我而言就是一种有状态的输入。
【4】访问历史数据,需要与昨日进行对比。昨日的数据对于今日而言也属于一种状态。你品,你细品。

为什么要管理状态,用内存不香吗?首先流失作业是有它的标准的,不是什么东西随随便便就说自己这个是流失处理。首先,7*24小时运行,高可靠,你内存不行吧,你的容量总有用完的时候吧。其次,数据不丢失不重,恰好计算一次,你内存要实现需要备份和恢复,你还总伴随着小部分数据的丢失吧。最后,数据实时产生,不延迟,你内存不够横向扩展时,你需要延迟吧。

理想的状态管理就是下面描述的样子,Flink也都帮我们实现了。
[点击并拖拽以移动] ​

二、状态的类型

Managed State & Raw State

Managed StateRaw State
状态管理方式Flink Runtime 管理 —自动存储,自动恢复 —内存管理上有优化用户自己管理(Flink不知道你在State中存储的数据结构的) —要自己实例化
状态数据结构已知的数据结构 —value,list,map…字节数据 —byte[]
推荐使用场景大多数情况下均可使用自定义 Operator 时可以使用(当Managed State 不够时使用)

Managed Stated 分为: Keyed StatedOperator State
【1】Keyed Stated: 只能用于keyBy生成的KeyedStream上的算子。每一个key对应一个State,一个Operator实例处理多个Key,访问相应的多个State。相同Key会在相同的实例中处理。整个过程如果没有keyBy操作,它是没有KeyedStream的,而Keyed Stated只能应用在KeyedStream 上。

并发改变: State随着Key在实例间迁移。例如:实例A中之前处理KeyAKeyB,后面我扩展了实例B,那么 实例A就只需要处理KeyAKeyB就交给 实例B进行处理。安装状态进行分离,可以理解为分布式。

通过 RuntimeContext 访问,说明Operator是一个Rich Function,否则是拿不到RuntimeContext

支持的数据结构: ValueStateListStateReducingStateAggregatingStateMapState

【2】Operator State: 可以用于所有的算子,常用于source上,例如FlinkKafkaConsumer。一个Operator实例对应一个State,所以一个Operator中会处理多个key,可以理解为集群。

并发改变: Operator State没有key,并发改变的时候就需要重新分配。内置了两种方案:均匀分配和合并后每个得到全量。

访问方式: 实现CheckpointedFunctionListCheckpointed接口。

支持的数据结构: ListState

三、Keyed State 使用示例

什么是 keyed state: 对于keyed state,有两个特点:
【1】只能应用于KeyedStream 的函数与操作中,例如Keyed UDF, window state
【2】keyed state是已经分区 / 划分好的,每一个 key 只能属于某一个 keyed state
对于如何理解已经分区的概念,我们需要看一下keyby的语义,大家可以看到下图左边有三个并发,右边也是三个并发,左边的词进来之后,通过keyby会进行相应的分发。例如对于hello wordhello这个词通过hash运算永远只会到右下方并发的task上面去。
[点击并拖拽以移动] ​

什么是 operator state
【1】又称为non-keyed state,每一个operator state都仅与一个operator的实例绑定。
【2】常见的operator statesource state,例如记录当前sourceoffset再看一段使用operator stateword count代码:
[点击并拖拽以移动] ​

这里的fromElements会调用FromElementsFunction的类,其中就使用了类型为list stateoperator state。如下几种Keyed State之间的依赖关系,都是state的子类。它们的访问方式和数据结构都有一定的区别。
[点击并拖拽以移动] ​

状态数据类型访问接口备注
ValueState单个值[update(T) 修改/T value 获取]例如 WordCount 用 word 做 key,state就是单个的数值。这个单个也可以是字符串、对象等都有可能。访问方式只有上面两种。
MapStateMapput(UK key, UV value) putAll(Map<UK,UV> map) remove(UK key) boolean contains(UK key) UV get(UK key) Iterable<Map.Entry> entries() Iterable<Map.Entry> iterator() Iterable keys() Iterable values()能够操作具体的对象的key
ListStateListadd/ addAll(List) update(List) Iterable get()
ReducingState单个值add/ addAll(List) update(List) T get()与 List 是同一个父类,这个add是直接将数据更新进了 Reducing的结果里面。举个例子,例如我们统计1分钟的结果,list是先将数据添加到list中,等到1分钟的时候全来出来统计。而 Reducing是来一条就统计一条结果。好处是节省内存。
AggregatingState单个值add(IN)/OUT get()与 List 是同一个父类,与Reducing的不同是,Reducing输入和输出的类型都是相同的。而Aggregating 是可以不同的。例如,我要计算一个平局值,Reducing是算好返回,而Aggregating会返回总和和个数。

举个ValueState的案例

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//获取数据流
DataStream<Event> events = env.addSource(source);

DataStream<Alert> alerts = events
        // 生成 keyedStata 通过 sourceAddress
        .keyBy(Event::sourceAddress)
        // StateMachineMapper 状态机
        .flatMap(new StateMachineMapper());


//我么看下状态机怎么写   实现 RichFlatMapFunction
@SuppressWarnings("serial")
static class StateMachineMapper extends RichFlatMapFunction<Event, Alert> {

    private ValueState<LeaderLatch.State> currentState;

    @Override
    public void open(Configuration conf) {
        // 获取一个 valueState
        currentState = getRuntimeContext().getState(
                new ValueStateDescriptor<>("state", State.class));
    }

    //来一条数据处理一条
    @Override
    public void flatMap(Event evt, Collector<Alert> out) throws Exception {
        // 获取 value
        State state = currentState.value();
        if (state == null) {
            state = State.Initial;//State 是本地的变量
        }

        // 把事件对状态的影响加上去,得到一个状态
        State nextState = state.transition(evt.type());

        //判断状态是否合法
        if (nextState == State.InvalidTransition) {
            //扔出去
            out.collect(new Alert(evt.sourceAddress(), state, evt.type()));
        }
        //是否不能继续转化了,例如取消的订单
        else if (nextState.isTerminal()) {
            // 从 state 中清楚掉
            currentState.clear();
        }
        else {
            // 修改状态
            currentState.update(nextState);
        }
    }
}

四、CheckPoint 与 state 的关系

Checkpoint是从source触发到下游所有节点完成的一次全局操作。下图可以有一个对Checkpoint的直观感受,红框里面可以看到一共触发了 569KCheckpoint,然后全部都成功完成,没有fail的。
[点击并拖拽以移动] ​

**state 其实就是 Checkpoint 所做的主要持久化备份的主要数据,**看下图的具体数据统计,其state也就9kb大小 。
[点击并拖拽以移动] ​

五、状态如何保存和恢复

Checkpoint定时制作分布式快照,对程序的状态进行备份。发生故障时,将整个作业的Task都回滚到最后一次成功Checkpoint中的状态,然后从保存的点继续处理。

必要条件: 数据源支持重发(如果不重发,丢失的消息就真的丢了)

一致性语义: 恰好一次(如果p相同,单线程,多个线程时,可能有的算子对其已经计算了一次了,有的没有就需要注意),至少一次。

//  获取运行环境
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//状态数据
//两个checkpoint 触发间隔设置1S,越频繁追的数据就越少,io消耗也越大
env.enableCheckpointing(1000);
//EXACTLY_ONCE语义说明 Checkpoint是要对替的,这样消息不会重复,也不会对丢。
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//两个checkpoint 最少等待500ms 例如第一个checkpoint做了700ms按理300ms后就要做下一个checkpoint。但是它们之间的等待时间300ms<500ms 此时,就会延长200ms减少checkpoint过于频繁,影响业务。
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
//checkpoint多久超时,如果这个checkpoint在1分钟内还没做完,那就失败了
env.getCheckpointConfig().setCheckpointTimeout(60000);
//同时最多有多少个checkpoint进行
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
//当重新分配并发度,拆分task时,是否保存checkpoint。如果不保存就需要使用savepoint来保存数据,放到外部的介质中。
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION);

Checkpoint vs Savepoint

CheckpointSavepoint
触发管理方式由Flink自动触发并管理由用户手动触发并管理
主要用途在 Task 发生异常时快速恢复,例如网络抖动导致的超时异常有计划的进行备份,使作业能停止后再恢复,例如修改代码、调整并发。
特点轻量、自动从故障中服务、在作业停止后默认清除持久、以标准格式存储,允许代码或配置发生变化、手动触发 savepoint 恢复。

可选的状态存储方式:
【1】MemoryStateBackend:构造方法:

MemoryStateBackend(int maxStateSize, boolean asynchronousSnapshots)

存储方式: StateTaskManager内存。CheckpointJobManager内存。
容量限制: 单个State maxStateSize默认5MmaxStateSize <= akka.framesize默认10M。总大小不超过JobManager内存。
推荐使用场景: 本地测试,几乎无状态的作业,比如ETL/JobManager不容易挂,或影响不大的情况。不推荐在生产场景使用。

【2】FsStateBackend: 构造方法:

FsStateBackend(URL checkpointDataUri, boolean asynchronousSnapshots)

存储方式: StateTaskManager内存。Checkpoint:外部文件系统(本地或HDFS)。
容量限制: 单个TaskManagerState总量不超过它的内存。总大小不超过配置的文件系统容量(会定期清理)。
推荐使用场景: 常规使用状态的作业,例如分钟级窗口聚合、join。需要开启HA的作业。可以在生产环境使用。

【3】RocksDBStateBackend: 构造方法:

RocksDBStateBackend(URL checkpointDataUri, boolean enableIncrementalCheckpointing)

存储方式: StateTaskManager上的KV数据库(实际使用内存+磁盘)。Checkpoint:外部文件系统(本地或HDFS)。
容量限制: 单个TaskManagerState总量不超过它的内存+磁盘,单个key 最大2G。总大小不超过配置的文件系统容量。
推荐使用场景: 超大状态的作业,例如天级窗口聚合。需要开启HA的作业。对状态读写性能要求比较高的作业。可以在生产环境使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1327721.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python超实用插件REST Client、autoDocstring、Better Comments

1. autoDocstring 1.1 features 快速生成可以通过制表符浏览的文档字符串片段。在几种不同类型的文档字符串格式之间进行选择。通过pep484类型提示、默认值和变量名称推断参数类型。支持args、kwargs、装饰器、错误和参数类型。 1.2 用法 光标必须位于定义正下方的行上&am…

【数据结构】四、串

目录 一、定义 二、表示与实现 定长顺序存储 堆分配存储 链式存储 三、BF算法 四、KMP算法 1.求next数组 方法一 方法二&#xff08;考试方法&#xff09; 2.KMP算法实现 方法一 方法二 3.nextval 4.时间复杂度 本节最重要的就是KMP算法&#xff0c;其他要求不高…

pip 常用指令 pip config 命令用法介绍

&#x1f4d1;pip 常用命令归类整理 pip config 是一个用于管理本地和全局配置的命令行工具。它允许用户获取和设置所有的 pip 配置值。 命令 pip config 有以下参数 list&#xff1a;列出所有的 pip 配置值。edit&#xff1a;编辑 pip 配置文件。get&#xff1a;获取一个配…

时间是如何定义的

每年365天&#xff0c;每天24小时&#xff0c;每小时60分钟&#xff0c;每分钟60s&#xff0c;这是我们习以为常的时间计量单位&#xff0c;那么在继续往下&#xff0c;1s是多少&#xff1f;几时几刻、几点几分是如何确定的&#xff1f;带着这些问题&#xff0c;展开本文。 1、…

如何在 openKylin 上使用 ONLYOFFICE 桌面编辑器

文章作者&#xff1a;ajun ONLYOFFICE 桌面编辑器是一款基于依据 AGPL v.3 许可进行分发的开源办公套件。使用这款应用&#xff0c;您无需保持网络连接状态即可处理存储在计算机上的文档。 本文章基于中国根操作系统 openKylin 操作系统&#xff0c;使用软件商店快速安装与手…

rtsp视频在使用unity三维融合播放后的修正

1 rtsp 接入 我们使用unity UE 等三维渲染引擎中使用c编写插件来接入rtsp 视频。同时做融合的时候&#xff0c;和背景的三维颜色要一致&#xff0c;这就要使用视频融合修正技术。包括亮度&#xff0c;对比度&#xff0c;饱和度的修正。在单纯颜色上的修正可以简单使用rgb->…

Android 权限申请

在Android中&#xff0c;从Android 6.0&#xff08;API级别23&#xff09;开始&#xff0c;应用在运行时需要动态申请权限。以下是一些步骤来动态申请权限&#xff1a; 在应用的清单文件&#xff08;AndroidManifest.xml&#xff09;中声明需要的权限。例如&#xff0c;如果应…

前端FLV视频直播解决方案

项目背景&#xff1a; 1. 后台给出一个地址&#xff0c;持续不断的推送flv视频流。 2.前端需要接收视频流&#xff0c;并寻找合适的播放插件。 一开始&#xff1a; 其实用的是xgplayer&#xff08;西瓜视频&#xff09;。 官网地址&#xff1a;西瓜播放器 使用的是直播&a…

ardupilot开发 --- 风机不停机巡检 篇

在哪里创建的siyi实例&#xff1f; 如何传递飞控的时间戳给siyi相机&#xff1f; AP_RTC_ENABLED在waf编译时配置为1&#xff1f;&#xff1f; 如何配置&#xff1f; 在lua脚本中如何获取这个时间AP::rtc().get_utc_usec(utc_usec)&#xff1f;&#xff1f;&#xff1f; inclu…

【软件问题】解决 SecoClient 提示:接收返回码超时!

解决 SecoClient 提示&#xff1a;接收返回码超时&#xff01; 1.问题描述2.问题查找3.问题解决 系统&#xff1a;Win10 1.问题描述 这段时间因为不小心得了流感&#xff0c;所以需要请病假&#xff0c;而有些工作还得做不能落下&#xff0c;所以得居家办公&#xff0c;因为我…

【深入解析spring cloud gateway】12 gateway参数调优与分析

本节主要对网关主要的一些参数做一些解释说明&#xff0c;并用压测工具测试一下网关的接口&#xff0c;通过压测来验证参数配置是否合理 一、连接池参数 参数示例 spring:application:name: gatewaycloud:gateway:# http连接设置httpclient:# 全局的响应超时时间&#xff0c…

大语言模型(LLM)与 Jupyter 连接起来了!

现在&#xff0c;大语言模型&#xff08;LLM&#xff09;与 Jupyter 连接起来了&#xff01; 这主要归功于一个名叫 Jupyter AI 的项目&#xff0c;它是官方支持的 Project Jupyter 子项目。目前该项目已经完全开源&#xff0c;其连接的模型主要来自 AI21、Anthropic、AWS、Co…

【Git】在 IDEA 中合并多个 commit 为一个

文章目录 1 未提交到远程分支1.1 需求说明1.2 reset 操作1.3 再次 push 2 已经提交到远程分支2.1 需求说明2.2 rebase 操作2.3 强制 push 分两种情况&#xff1a; 一种是本地提交还没推到远程&#xff0c;这种好处理另一种是已经提交到远程分支&#xff0c;这个略麻烦 1 未提…

【Java代码审计】RCE篇

【Java代码审计】RCE篇 1.Java中的RCE2.ProcessBuilder命令执行漏洞3.Runtime exec命令执行漏洞4.脚本引擎代码注入5.RCE的防御 1.Java中的RCE 在PHP开发语言中有system()、exec()、shell_exec()、eval()、passthru()等函数可以执行系统命令。在Java开发语言中可以执行系统命令…

如何从 Android 手机免费恢复已删除的通话记录/历史记录?

有一个有合作意向的人给我打电话&#xff0c;但我没有接听。更糟糕的是&#xff0c;我错误地将其删除&#xff0c;认为这是一个骚扰电话。那么有没有办法从 Android 手机恢复已删除的通话记录呢&#xff1f;” 塞缪尔问道。如何在 Android 上恢复已删除的通话记录&#xff1f;如…

STM32CubeMX驱动ST7789

环境 1、单片机:STM32F103C8T6 2、开发平台&#xff1a;STM32CUBEMXkeil mdk 3、屏幕&#xff1a;ST7789&#xff0c;分辨率240*240 STM32配置 1、使用硬件SPI1驱动屏幕。配置如下&#xff1a; 2、屏幕控制引脚配置&#xff1a; 注意&#xff1a;只配置了DC,RST,CS这3个控…

BearPi Std 板从入门到放弃 - 后天篇(3)(ESP8266透传点灯)

简介 电脑搭建一个TCP Server&#xff0c; ESP8266 串口设置好透传模式, 再由TCP Server发送指令控制灯的亮灭; 开灯指令&#xff1a; led_on回车 &#xff1b; 关灯指令: led_off回车 主芯片: STM32L431RCT6 LED : PC13 \ 推挽输出即可 \ 高电平点亮 串口: Usart1 / LPUART E…

html之如何设置音频和视频

文章目录 前言一、音频标签&#xff1a;audio1.audio简介2.常用属性controlsautoplayloop代码演示&#xff1a; 二、视频标签&#xff1a;video1.video2.常用的视频元素controlsautoplayloop代码演示&#xff1a; 总结视频元素总结音频元素总结 前言 html中插入音频和视频的方…

网络通信--深入理解网络和TCP / IP协议

计算机网络体系结构 TCP/IP协议族 TCP / IP 网络传输中的数据术语 网络通信中的地址和端口 window端查看IP地址和MAC地址&#xff1a;ipconfig -all MAC层地址是在数据链路层的&#xff1b;IP工作在网络层的 MAC是48个字节&#xff0c;IP是32个字节 在子网&#xff08;局域…

4 postman响应数据解析

上一篇:3 使用postman批量创建测试数据-CSDN博客 在接口测试中,从接口的响应结果中获取数据是很常用的。比如说做断言的时候,需要确保接口返回数据是符合预期的。又比如有些接口的输入参数值,需要用到前面接口运行返回的数据。下面先介绍如何解析响应数据(以json数…