目录
- 1、前言
- LeNet-5简洁
- 基于Zynq7020 的设计说明
- PL 端 FPGA 逻辑设计
- PS 端 SDK 软件设计
- 免责声明
- 2、相关方案推荐
- 卷积神经网络解决方案
- FPGA图像处理方案
- 3、详细设计方案
- PL端:ov7725摄像头及图像采集
- PL端:图像预处理
- PL端:Xilinx推荐的图像缓存架构
- PL端:识别结果的 PL 与 PS 交互
- PL端:图像后处理
- PL端:RGB 转 HDMI
- PS端:图像获取
- PS端:卷积层计算
- PS端:池化层计算
- PS端:隐藏层计算
- PS端:输出层计算
- 4、vivado工程介绍
- PL 端 FPGA 逻辑设计工程
- PS 端 SDK 软件设计工程
- 5、工程移植说明
- vivado版本不一致处理
- FPGA型号不一致处理
- 其他注意事项
- 6、上板调试验证并演示
- 准备工作
- 输出静态演示
- 输出动态演示
- 7、福利:工程源码获取
FPGA 实现 LeNet-5 卷积神经网络 数字识别,提供工程源码和技术支持
1、前言
LeNet-5简洁
LeNet-5诞生于上世纪90年代,是CNN的开山之作,最早的卷积神经网络之一,用于手写数字识别(图像分类任务),它的诞生极大地推动了深度学习领域的发展。LeNet在多年的研究和迭代后,Yann LeCun将完成的这项开拓性成果被命名为LeNet5,并发表在论文《Gradient-Based Learning Applied to Document Recognition》上,如今的AlexNet、ResNet等都是在其基础上发展而来的,在当年是一种用于手写体字符识别的非常高效的卷积神经网络。如今的卷积神经网络模型早已沧海桑田,但作为基础入门的学习资料,LeNet-5依然在江湖中占有极其重要的一席之地;
基于Zynq7020 的设计说明
本文使用Xilinx的Kirtex Zynq7000系列的Zynq7020–xc7z020clg400-2型号FPGA 实现LeNet-5 卷积神经网络实现数字识别实验;基于Zynq7020的异构特性,本设计的图像采集、图像缓存、图像处理、图像输出用 PL 端的 FPGA 逻辑实现;LeNet-5 卷积神经网络的识别功能采用 PS 端的 SDK C语言软件实现;PS 端软件将识别结果通过 AXI-Lite 总线输出给 PL 端,实现了 PS 端软件与 PL 端硬件的交互;PL 端根据 PS 端软件的识别结果,将识别到的数字输出到显示器上,实现了人机交互;PL 和 PS 端是同步实时进行的;设计所用版本为vivado2019.1;
PL 端 FPGA 逻辑设计
输入视频源采用廉价的小分辨率的ov7725摄像头;Zynq软核通过EMIO模拟i2c总线配置ov7725摄像头分辨率为640x480;然后将输入视频送入纯verilog代码实现的视频采集模块,将DVP视频转换为RGB888视频;然后将视频送入纯verilog代码实现的图像预处理模块,该模块在640x480图像正中心框出一块122x122大小图像区域,该区域作为输入数字图像的采集区域,是后面的LeNet-5卷积神经网络进行识别的区域;然后调用Xilinx官方的 Video In to AXI4-Stream 将RGB888视频转换为AXI4-Stream视频;然后调用Xilinx官方的 VDMA 将视频缓存进PS侧DDR3再读出,为了低延时,VDMA设置为1帧缓存,需要在SDK中配置才能使用;然后调用Xilinx官方的 Video Timing Controller 和 AXI4-Stream to Video Out 将 AXI4-Stream 视频转换为 RGB888视频;然后调用Xilinx官方的 ps_pl_axi_lite 接收 PS 端软件LeNet-5数字识别结果,送入图像后处理模块,该模块例化了10个 ROM ,存储了 0~9 的9个数字,并根据识别结果输出对应的数字到显示屏的右上角显示;然后将图像送入纯verilog代码实现的RGB转HDMI模块,该模块输出HDMI视频到显示器;
PS 端 SDK 软件设计
PS 端实现LeNet-5 卷积神经网络的识别功能,并将识别结果通过AXI-Lite 总线输出给 PL 端;首先在内存开辟一些列缓存空间,用来存储图像和LeNet-5 卷积神经网络计算的中间结果;软件先从 DDR3 中读取 28x28 大小的图像,然后存入事先开辟好的内存,由于需要识别的图像大小为122x122,所以需要取4次才能完整的取完一张图片;然后将图像送入卷积层计算,计算结果存入事先开辟好的内存;然后进行池化层计算,计算结果存入事先开辟好的内存;然后进行隐藏层计算,计算结果存入事先开辟好的内存;然后进行输出层计算,最后将输出结果通过AXI-Lite 总线输出给 PL 端;
免责声明
本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。
2、相关方案推荐
卷积神经网络解决方案
我的主页有FPGA 卷积神经网络专栏,该专栏有 LeNet、 CNN、 DNN等卷积神经网络FPGA实现方案;以下是专栏地址:
点击直接前往
FPGA图像处理方案
我的主页目前有FPGA图像处理专栏,改专栏收录了我目前手里已有的FPGA图像处理方案,包括图像缩放、图像识别、图像拼接、图像融合、图像去雾、图像叠加、图像旋转、图像增强、图像字符叠加等等;以下是专栏地址:
点击直接前往
3、详细设计方案
本文使用Xilinx的Kirtex Zynq7000系列的Zynq7020–xc7z020clg400-2型号FPGA 实现LeNet-5 卷积神经网络实现数字识别实验;基于Zynq7020的异构特性,本设计的图像采集、图像缓存、图像处理、图像输出用 PL 端的 FPGA 逻辑实现;LeNet-5 卷积神经网络的识别功能采用 PS 端的 SDK C语言软件实现;PS 端软件将识别结果通过 AXI-Lite 总线输出给 PL 端,实现了 PS 端软件与 PL 端硬件的交互;PL 端根据 PS 端软件的识别结果,将识别到的数字输出到显示器上,实现了人机交互;设计框图如下:
PL端:ov7725摄像头及图像采集
输入视频源采用廉价的小分辨率的ov7725摄像头;Zynq软核通过EMIO模拟i2c总线配置ov7725摄像头分辨率为640x480;然后将输入视频送入纯verilog代码实现的视频采集模块,将DVP视频转换为RGB888视频;摄像头采集部分代码如下:
这里采用ov7725摄像头的主要原因是他的分辨率很小,只有640x480@60Hz,卷积神经网络对输入图像的大小求小不求大,因为太大的图像耗费的运算时间很长;
PL端:图像预处理
然后将视频送入纯verilog代码实现的图像预处理模块,该模块在640x480图像正中心框出一块122x122大小图像区域,该区域作为输入数字图像的采集区域,是后面的LeNet-5卷积神经网络进行识别的区域;图像预处理模块代码如下:
图像预处理模块首先对输入图像进行RGB转灰度操作,将RGB888视频转为8bit的灰度图,这样有利于图像识别,因为图像识别需要的只是图像边沿和轮廓的像素信息,RGB分量显然数据量太大,灰度图则完美契合;然后图像进行框选处理,即框选出需要进行识别的区域,正如前面所说,卷积神经网络对输入图像的大小求小不求大,对于640x480的采集图像,我们并不是全部都纳入识别范围,而是选择了0图像正中心框出一块122x122大小图像区域,因为数字本身就不会太大,不太可能整个屏幕全是单个数字吧?实现的效果如下:
PL端:Xilinx推荐的图像缓存架构
然后调用Xilinx官方的 Video In to AXI4-Stream 将RGB888视频转换为AXI4-Stream视频;然后调用Xilinx官方的 VDMA 将视频缓存进PS侧DDR3再读出,为了低延时,VDMA设置为1帧缓存,需要在SDK中配置才能使用;然后调用Xilinx官方的 Video Timing Controller 和 AXI4-Stream to Video Out 将 AXI4-Stream 视频转换为 RGB888视频;这是一套标准的Xilinx推荐的图像缓存架构;
PL端:识别结果的 PL 与 PS 交互
调用Xilinx官方的 ps_pl_axi_lite 接收 PS 端软件LeNet-5数字识别结果,并根据识别结果,将识别到的数字输出到显示器上;axi_lite是一个轻量级总线,在SDK里直接调用API即可写数据;
PL端:图像后处理
s_pl_axi_lite 接收 PS 端软件LeNet-5数字识别结果,送入图像后处理模块,该模块例化了10个 ROM ,存储了 0~9 的9个数字,并根据识别结果输出对应的数字到显示屏的右上角显示;图像后处理模块代码如下:
图像后处理的核心操作是像素替换,当有识别结果输入时,在显示屏右上角显示对应的数字,否则显示原始的ov7725采集像素;实现的效果如下:
PL端:RGB 转 HDMI
然后将图像送入纯verilog代码实现的RGB转HDMI模块,该模块输出HDMI视频到显示器;RGB转HDMI模块代码如下:
PS端:图像获取
软件先从 DDR3 中读取 28x28 大小的图像,然后存入事先开辟好的内存,由于需要识别的图像大小为122x122,所以需要取4次才能完整的取完一张图片;代码如下:
PS端:卷积层计算
然后将图像送入卷积层计算,计算结果存入事先开辟好的内存;代码如下:
卷积模型由Python训练得到,并转换为C语言数组;卷积核详情请看注释,注释还在进一步优化中。。。
PS端:池化层计算
然后进行池化层计算,计算结果存入事先开辟好的内存;代码如下:
池化层详情请看注释,注释还在进一步优化中。。。
PS端:隐藏层计算
然后进行隐藏层计算,计算结果存入事先开辟好的内存;代码如下:
隐藏层详情请看注释,注释还在进一步优化中。。。
PS端:输出层计算
然后进行隐藏层计算,计算结果存入事先开辟好的内存;然后进行输出层计算,最后将输出结果通过AXI-Lite 总线输出给 PL 端;代码如下:
4、vivado工程介绍
PL 端 FPGA 逻辑设计工程
开发板FPGA型号:Xilinx–Zynq7020–xc7z020clg400-2;
开发环境:Vivado2019.1;
输入:OV7725摄像头,分辨率640x480;
输出:HDMI,分辨率640x480;
工程作用:FPGA基于 LeNet-5 卷积神经网络实现数字识别;
工程BD如下:
工程代码架构如下:
工程的资源消耗和功耗如下:
PS 端 SDK 软件设计工程
PS 端 SDK 软件工程代码架构如下:
5、工程移植说明
vivado版本不一致处理
1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
3:如果你的vivado版本高于本工程vivado版本,解决如下:
打开工程后会发现IP都被锁住了,如下:
此时需要升级IP,操作如下:
FPGA型号不一致处理
如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;
其他注意事项
1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;
6、上板调试验证并演示
准备工作
Zynq7000系列开发板,我用的Zynq7020;
OV7725摄像头;
HDMI显示器;
打印一张0~9的数字的纸张,字体要加粗,可以用我资料包里的文档打印,打印出来如下:
将显示器中的采集区域对着数字,移动摄像头对准,如下:
输出静态演示
识别结果如下:
输出动态演示
录制了一个小视频,输出动态演示如下:
LeNet-5数字识别
7、福利:工程源码获取
福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下: