深度学习中的张量维度

news2024/11/16 19:28:23

1 深度学习中的张量

在深度学习框架中,Tensor(张量)是一种数据结构,用于存储和操作多维数组。张量可以被视为一种扩展的矩阵,它可以具有任意数量的维度。

在深度学习中,张量通常被用来表示神经网络的输入、输出、权重和梯度等数据。在深度学习框架中,张量是一个重要的概念,因为它是深度学习计算的基本单位。

张量可以用不同的数据类型表示,如浮点型、整型等。在深度学习框架中,通常使用GPU来加速张量的计算,因为GPU具有并行计算能力,可以快速地执行大量的矩阵和向量运算。

深度学习框架通常提供了一些张量操作函数,如矩阵乘法、卷积、池化等,使得用户可以方便地进行张量计算。

2 张量的基本属性

主要有三个属性:秩、轴、形状

  • 秩:主要告诉我们是张量的维度,其实就是告诉我们是几维向量,通过多少个索引就可以访问到元素。
  • 轴:在张量中,轴是指张量的一个维度。当处理多维数据时,每个维度都可以被称为一个轴。通常,第一个轴称为0轴(或轴0),第二个轴称为1轴(或轴1),以此类推。
  • 形状:形状是指张量在每个轴上的维度大小。它是一个由整数组成的元组,表示张量沿着每个轴的大小。
     

3 张量的维度

3.1 标量(0D 张量)

仅包含一个数字的张量叫作标量(scalar,也叫标量张量、零维张量、0D 张量)。在 Numpy中,一个 float32 或 float64 的数字就是一个标量张量(或标量数组)。你可以用 ndim 属性来查看一个 Numpy 张量的轴的个数。标量张量有 0 个轴( ndim == 0 )。张量轴的个数也叫作阶(rank)。下面是一个 Numpy 标量。

    import numpy as np
    x = np.array(12)
    print(x.ndim)
    x

结果:

    0
    array(12)

3.2 向量(1D 张量)

数字组成的数组叫作向量(vector)或一维张量(1D 张量)。一维张量只有一个轴。下面是一个 Numpy 向量。

    import numpy as np
    x = np.array([12, 3, 6, 14, 7])
    print(x.ndim)
    x

结果:

    1
    array([12, 3, 6, 14, 7])

注意:这个向量有 5 个元素,所以被称为 5D 向量。不要把 5D 向量和 5D 张量弄混! 5D 向量只有一个轴,沿着轴有 5 个维度,而 5D 张量有 5 个轴(沿着每个轴可能有任意个维度)。维度(dimensionality)可以表示沿着某个轴上的元素个数(比如 5D 向量),也可以表示张量中轴的个数(比如 5D 张量),这有时会令人感到混乱。对于后一种情况,技术上更准确的说法是 5 阶张量(张量的阶数即轴的个数),但 5D 张量这种模糊的写法更常见。

3.3 矩阵(2D 张量)

向量组成的数组叫作矩阵(matrix)或二维张量(2D 张量)。矩阵有 2 个轴(通常叫作行和列)。你可以将矩阵直观地理解为数字组成的矩形网格。下面是一个 Numpy 矩阵。

    import numpy as np
    x = np.array([[5, 78, 2, 34, 0],
                  [6, 79, 3, 35, 1],
                  [7, 80, 4, 36, 2]])
    print(x.ndim)

结果:

    2

3.4 3D 张量与更高维张量

将多个矩阵组合成一个新的数组,可以得到一个 3D 张量,你可以将其直观地理解为数字组成的立方体。下面是一个 Numpy 的 3D 张量。

    import numpy as np
    x = np.array([[[5, 78, 2, 34, 0],
                   [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]],
                  
                  [[5, 78, 2, 34, 0],
                   [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]],
            
                  [[5, 78, 2, 34, 0],
                   [6, 79, 3, 35, 1],
                   [7, 80, 4, 36, 2]]])
    print(x.ndim)

 结果: 

    3

将多个 3D 张量组合成一个数组,可以创建一个 4D 张量,以此类推。深度学习处理的一般是 0D 到 4D 的张量,但处理视频数据时可能会遇到 5D 张量。
 

4 现实世界中的数据张量

我们现实中要处理的数据几乎总是以下类别之一:

  • 向量数据:2D 张量,形状为 (samples, features) 。

  • 时间序列数据或序列数据:3D 张量,形状为 (samples, timesteps, features) 。

  • 图像:4D张量,形状为 (samples, height, width, channels) 或 (samples, channels,

  • height, width) 。

  • 视频:5D张量,形状为 (samples, frames, height, width, channels) 或 (samples,frames, channels, height, width) 。

 4.1 向量数据

 这是最常见的数据。对于这种数据集,每个数据点都被编码为一个向量,因此一个数据批量就被编码为 2D 张量(即向量组成的数组),其中第一个轴是样本轴,第二个轴是特征轴。

两个例子:

  • 人口统计数据集,其中包括每个人的年龄、邮编和收入。每个人可以表示为包含 3 个值的向量,而整个数据集包含 100 000 个人,因此可以存储在形状为 (100000, 3) 的 2D张量中。
  • 文本文档数据集,我们将每个文档表示为每个单词在其中出现的次数(字典中包含20 000 个常见单词)。每个文档可以被编码为包含 20 000 个值的向量(每个值对应于字典中每个单词的出现次数),整个数据集包含 500 个文档,因此可以存储在形状为(500, 20000) 的张量中。

 4.2 时间序列数据或序列数据

当时间(或序列顺序)对于数据很重要时,应该将数据存储在带有时间轴的 3D 张量中。每个样本可以被编码为一个向量序列(即 2D 张量),因此一个数据批量就被编码为一个 3D 张量(见下图)

根据惯例,时间轴始终是第 2 个轴(索引为 1 的轴)。

两个例子:

  • 股票价格数据集。每一分钟,我们将股票的当前价格、前一分钟的最高价格和前一分钟的最低价格保存下来。因此每分钟被编码为一个 3D 向量,整个交易日被编码为一个形状为 (390, 3) 的 2D 张量(一个交易日有 390 分钟),而 250 天的数据则可以保存在一个形状为 (250, 390, 3) 的 3D 张量中。这里每个样本是一天的股票数据。
  • 推文数据集。我们将每条推文编码为 280 个字符组成的序列,而每个字符又来自于 128个字符组成的字母表。在这种情况下,每个字符可以被编码为大小为 128 的二进制向量(只有在该字符对应的索引位置取值为 1,其他元素都为 0)。那么每条推文可以被编码为一个形状为 (280, 128) 的 2D 张量,而包含 100 万条推文的数据集则可以存储在一个形状为 (1000000, 280, 128) 的张量中。

 4.3 图像数据

图像通常具有三个维度:高度、宽度和颜色深度。虽然灰度图像(比如 MNIST 数字图像)只有一个颜色通道,因此可以保存在 2D 张量中,但按照惯例,图像张量始终都是 3D 张量,灰度图像的彩色通道只有一维。因此,如果图像大小为 256×256,那么 128 张灰度图像组成的批量可以保存在一个形状为 (128, 256, 256, 1) 的张量中,而 128 张彩色图像组成的批量则可以保存在一个形状为 (128, 256, 256, 3) 的张量中。

图像张量的形状有两种约定:通道在后(channels-last)的约定(在 TensorFlow 中使用)和通道在前(channels-first)的约定(在 Theano 中使用)。Google 的 TensorFlow 机器学习框架将颜色深度轴放在最后: (samples, height, width, color_depth) 。与此相反,Theano将图像深度轴放在批量轴之后: (samples, color_depth, height, width) 。如果采用 Theano 约定,前面的两个例子将变成 (128, 1, 256, 256) 和 (128, 3, 256, 256) 。Keras 框架同时支持这两种格式。

4.4 视频数据

视频数据是现实生活中需要用到 5D 张量的少数数据类型之一。视频可以看作一系列帧,每一帧都是一张彩色图像。由于每一帧都可以保存在一个形状为 (height, width, color_depth) 的 3D 张量中,因此一系列帧可以保存在一个形状为 (frames, height, width,color_depth) 的 4D 张量中,而不同视频组成的批量则可以保存在一个 5D 张量中,其形状为(samples, frames, height, width, color_depth) 。

举个例子:一个以每秒 4 帧采样的 60 秒 YouTube 视频片段,视频尺寸为 144×256,这个视频共有 240 帧。4 个这样的视频片段组成的批量将保存在形状为 (4, 240, 144, 256, 3)的张量中。总共有 106 168 320 个值!如果张量的数据类型( dtype )是 float32 ,每个值都是32 位,那么这个张量共有 405MB。好大!你在现实生活中遇到的视频要小得多,因为它们不以float32 格式存储,而且通常被大大压缩,比如 MPEG 格式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1323315.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

easylogging 的笔记

学习总结 应用在c的工程里 easylog是一个用于记录日志的工具,其中分出了7种级别:分别是INFO;DEBUG;WARNING;TRACE;VERBOSE;ERROR;FATAL。其中FATAL这个log的输出会导致程序运行的退…

剑指 Offer(第2版)面试题 41:数据流的中位数

剑指 Offer(第2版)面试题 41:数据流的中位数 剑指 Offer(第2版)面试题 41:数据流的中位数解法1:优先队列解法2:有序集合 双指针 剑指 Offer(第2版)面试题 41…

控制理论simulink+matlab

这里写目录标题 根轨迹二级目录三级目录 根轨迹 z [-1]; %开环传递函数的零点 p [0 -2 -3 -4]; %开环传递函数的系统极点 k 1; %开环传递函数的系数,反映在比例上 g zpk(z,p,k); %生成开环传递函数%生成的传递函数如下 % (s1) % -------------…

【HarmonyOS开发】ArkUI中的自定义弹窗

弹窗是一种模态窗口,通常用来展示用户当前需要的或用户必须关注的信息或操作。在弹出框消失之前,用户无法操作其他界面内容。ArkUI 为我们提供了丰富的弹窗功能,弹窗按照功能可以分为以下两类: 确认类:例如警告弹窗 Al…

GitBook安装及使用——使用 Markdown 创建你自己的博客网站和电子书

目录 前言一、依赖环境二、gitbook安装使用1.安装 gitbook-cli2.安装 gitbook3.Gitbook初始化4.创建你的文章5.修改 SUMMARY.md 和 README.md6.编译生成静态网页7.运行以便在浏览器预览8.运行效果 前言 GitBook是一个命令行工具,用于使用 Markdown 构建漂亮的博客网…

npm login报错:Public registration is not allowed

npm login报错:Public registration is not allowed 1.出现场景2.解决 1.出现场景 npm login登录时,出现 2.解决 将自己的npm镜像源改为npm的https://registry.npmjs.org/这个,解决!

鸿蒙4.0核心技术-WebGL开发

场景介绍 WebGL主要帮助开发者在前端开发中完成图形图像的相关处理,比如绘制彩色图形等。 接口说明 表1 WebGL主要接口列表 接口名描述canvas.getContext获取canvas对象上下文。webgl.createBuffer(): WebGLBuffernullwebgl.bindBuffer(target: GLenum, buffer: …

服务器数据恢复-EMC存储raid5磁盘物理故障离线的数据恢复案例

服务器数据恢复环境&故障: 一台emc某型号存储服务器,存储服务器上组建了一组raid5磁盘阵列,阵列中有两块磁盘作为热备盘使用。存储服务器在运行过程中有两块磁盘出现故障离线,但是只有一块热备盘激活,最终导致该ra…

Gin之GORM多表关联查询(多对多;自定义预加载SQL)

数据库三个,如下: 注意:配置中间表的时候,表设计层面最好和配置的其他两张表契合,例如其他两张表为fate内的master和slave;要整合其对应关系的话,设计中间表的结构为master_id和slave_id最好(不然会涉及重写外键的操作) 重写外键(介绍) 对于 many2many 关系,连接表…

智能优化算法应用:基于黑寡妇算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于黑寡妇算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于黑寡妇算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.黑寡妇算法4.实验参数设定5.算法结果6.参考文…

Jenkins Docker Cloud在Linux应用开发CI中的实践

Jenkins Docker Cloud在Linux应用开发CI中的实践 背景 通过代码提交自动触发CI自动构建、编译、打包是任何软件开发组织必不可少的基建,可以最大程度保证产物的一致性,方便跨组跨部门协作,代码MR等。 Docker在流水线中越来越重要&#xff…

iPhone手机开启地震预警功能

iPhone手机开启地震预警功能 地震预警告警开启方式 地震预警 版权:成都高新减灾研究所 告警开启方式

蜘点云原生之 KubeSphere 落地实践过程

作者:池晓东,蜘点商业网络服务有限公司技术总监,从事软件开发设计 10 多年,喜欢研究各类新技术,分享技术。 来源:本文由 11 月 25 日广州站 meetup 中讲师池晓东整理,整理于该活动中池老师所分享…

YOLOv8改进 | 主干篇 | 轻量级网络ShuffleNetV2(附代码+修改教程)

一、本文内容 本文给大家带来的改进内容是ShuffleNetV2,这是一种为移动设备设计的高效CNN架构。其在ShuffleNetV1的基础上强调除了FLOPs之外,还应考虑速度、内存访问成本和平台特性。(我在YOLOv8n上修改该主干降低了GFLOPs,但是参数量还是有一定上涨&am…

【Docker】基础篇

文章目录 Docker为什么出现容器和虚拟机关于虚拟机关于Docker二者区别: Docker的基本组成相关概念-镜像,容器,仓库安装Docker卸载docker阿里云镜像加速docker run的原理**为什么容器比虚拟机快**Docker的常用命令1.帮助命令2.镜像相关命令3.容…

C语言—每日选择题—Day51

第一题 1. 对于函数void f(int x);,下面调用正确的是() A:int y f(9); B:f(9); C:f( f(9) ); D:xf(); 答案及解析 B 函数调用要看返回值和传参是否正确; A:错误&#xf…

【ArcGIS微课1000例】0081:ArcGIS指北针乱码解决方案

问题描述: ArcGIS软件在作图模式下插入指北针,出现指北针乱码,如下图所示: 问题解决 下载并安装字体(配套实验数据包0081.rar中获取)即可解决该问题。 正常的指北针选择器: 专栏介绍&#xff…

Hadoop3.x完全分布式模式下slaveDataNode节点未启动调整

目录 前言 一、问题重现 1、查询Hadoop版本 2、集群启动Hadoop 二、问题分析 三、Hadoop3.x的集群配置 1、停止Hadoop服务 2、配置workers 3、从节点检测 4、WebUI监控 总结 前言 在大数据的世界里,Hadoop绝对是一个值得学习的框架。关于Hadoop的知识&…

elementui中的el-table,当使用fixed属性时,table主体会遮挡住滚动条的大半部分,导致很难选中。

情况&#xff1a; 解决&#xff1a; el-table加个类&#xff0c;这里取为class"table" 然后是样式部分&#xff1a; <style scoped lang"scss"> ::v-deep.table {// 滚动条高度调整::-webkit-scrollbar {height: 15px;}// pointer-events 的基本信…

一款电压检测LVD

一、基本概述 The TX61C series devices are a set of three terminal low power voltage detectors implemented in CMOS technology. Each voltage detector in the series detects a particular fixed voltage ranging from 0.9V to 5.0V. The voltage detectors consist…