YOLOv5改进 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)

news2025/1/11 14:16:07

 一、本文介绍

本文给大家带来的改进是Triplet Attention三重注意力机制。这个机制,它通过三个不同的视角来分析输入的数据,就好比三个人从不同的角度来观察同一幅画,然后共同决定哪些部分最值得注意。三重注意力机制的主要思想是在网络中引入了一种新的注意力模块,这个模块包含三个分支,分别关注图像的不同维度。比如说,一个分支可能专注于图像的宽度,另一个分支专注于高度,第三个分支则聚焦于图像的深度,即色彩和纹理等特征。这样一来,网络就能够更全面地理解图像内容,就像是得到了一副三维眼镜,能够看到图片的立体效果一样。

 推荐指数:⭐⭐⭐⭐

 专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

训练结果对比图->  

​​​​​​​


二、Triplet Attention机制原理

论文地址:官方论文地址

代码地址:官方代码地址


2.1 Triplet Attention的基本原理 

三重注意力(Triplet Attention)的基本原理是利用三支结构捕获输入数据的跨维度交互,从而计算注意力权重。这个方法能够构建输入通道或空间位置之间的相互依赖性,而且计算代价小。三重注意力由三个分支组成,每个分支负责捕获空间维度H或W与通道维度C之间的交互特征。通过对每个分支中的输入张量进行排列变换,然后通过Z池操作和一个大小为k×k的卷积层,生成注意力权重。这些权重是通过一个S形激活层生成的,然后应用于排列变换后的输入张量,再变换回原来的输入形状 

三重注意力(Triplet Attention)的主要改进点包括:

  1. 跨维度的注意力权重计算: 通过一个创新的三支结构捕获通道、高度、宽度三个维度之间的交互关系来计算注意力权重。

  2. 旋转操作和残差变换: 通过旋转输入张量和应用残差变换来建立不同维度间的依赖,这是三重注意力机制中的关键步骤。

  3. 维度间依赖性的重要性: 强调在计算注意力权重时,捕获跨维度依赖性的重要性,这是三重注意力的核心直觉和设计理念。

下面的图片是三重注意力的一个抽象表示图,展示了三个分支如何捕获跨维度交互。图中的每个子图表示三重注意力中的一个分支: 

1. 分支(a): 这个分支直接处理输入张量,没有进行旋转,然后通过残差变换来提取特征。

2. 分支(b): 这个分支首先沿着宽度(W)和通道(C)的维度旋转输入张量,然后进行残差变换。

3. 分支(c): 这个分支沿着高度(H)和通道(C)的维度旋转输入张量,之后同样进行残差变换。

总结:通过这样的设计,三重注意力模型能够有效地捕获输入张量中的空间和通道维度之间的交互关系。这种方法使模型能够构建通道与空间位置之间的相互依赖性,提高模型对特征的理解能力。


2.2 Triplet Attention和其它简单注意力机制的对比 

下面的图片是论文中三重注意力机制和其它注意力机制的一个对比大家有兴趣可以看看,横向扩展以下自己的知识库。

这张图片是一幅对比不同注意力模块的图示,其中包括:

1.Squeeze Excitation (SE) Module:
这个模块使用全局平均池化 (Global Avg Pool) 生成通道描述符,接着通过两个全连接层(1x1 Conv),中间使用ReLU激活函数,最后通过Sigmoid函数生成每个通道的权重。

2. Convolutional Block Attention Module (CBAM):
首先使用全局平均池化和全局最大池化(GAP + GMP)结合,再通过一个卷积层和ReLU激活函数,最后经过另一个卷积层和Sigmoid函数生成注意力权重。

3. Global Context (GC) Module:
从一个1x1卷积层开始,经过Softmax函数进行归一化,接着进行另一个1x1卷积,然后使用LayerNorm和最终的1x1卷积,通过广播加法结合原始特征图。

4. Triplet Attention (我们的方法):
分为三个分支,每个分支进行不同的处理:通道池化后的7x7卷积,Z池化,再接一个7x7卷积,然后是批量归一化和Sigmoid函数。每个分支都有一个Permute操作来调整维度。最后,三个分支的结果通过平均池化聚合起来生成最终的注意力权重。

每种模块都设计用于处理特征图(C x H x W),其中C是通道数,H是高度,W是宽度。这些模块通过不同方式计算注意力权重,增强网络对特征的重要部分的关注度,从而在各种视觉任务中提高性能。图片中的符号⊗代表矩阵乘法,⊕代表广播元素级加法。


2.3 Triplet Attention的实现流程

下面的图片是三重注意力(Triplet Attention)的具体实现流程图。图中详细展示了三个分支如何处理输入张量,并最终合成三重注意力。下面是对这个过程的描述: 

  1. 上部分支: 负责计算通道维度C和空间维度W的注意力权重。这个分支对输入张量进行Z池化(Z-Pool)操作,然后通过一个卷积层(Conv),接着用Sigmoid函数生成注意力权重。

  2. 中部分支: 负责捕获通道维度C与空间维度H和W之间的依赖性。这个分支首先进行相同的Z池化和卷积操作,然后同样通过Sigmoid函数生成注意力权重。

  3. 下部分支: 用于捕获空间维度之间的依赖性。这个分支保持输入的身份(Identity,即不改变输入),执行Z池化和卷积操作,之后也通过Sigmoid函数生成注意力权重。

每个分支在生成注意力权重后,会对输入进行排列(Permutation),然后将三个分支的输出进行平均聚合(Avg),最终得到三重注意力输出。

这种结构通过不同的旋转和排列操作,能够综合不同维度上的信息,更好地捕获数据的内在特征,同时这种方法在计算上是高效的,并且可以作为一个模块加入到现有的网络架构中,增强网络对复杂数据结构的理解和处理能力。


三、Triplet Attention的核心代码

我们找到如下的目录'yolov5-master/models'在这个目录下创建一个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。

import torch
import torch.nn as nn
from ..common import Conv

class BasicConv(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True,
                 bn=True, bias=False):
        super(BasicConv, self).__init__()
        self.out_channels = out_planes
        self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
                              dilation=dilation, groups=groups, bias=bias)
        self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
        self.relu = nn.ReLU() if relu else None

    def forward(self, x):
        x = self.conv(x)
        if self.bn is not None:
            x = self.bn(x)
        if self.relu is not None:
            x = self.relu(x)
        return x


class ZPool(nn.Module):
    def forward(self, x):
        return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1).unsqueeze(1)), dim=1)


class AttentionGate(nn.Module):
    def __init__(self):
        super(AttentionGate, self).__init__()
        kernel_size = 7
        self.compress = ZPool()
        self.conv = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size - 1) // 2, relu=False)

    def forward(self, x):
        x_compress = self.compress(x)
        x_out = self.conv(x_compress)
        scale = torch.sigmoid_(x_out)
        return x * scale


class TripletAttention(nn.Module):
    def __init__(self, no_spatial=False):
        super(TripletAttention, self).__init__()
        self.cw = AttentionGate()
        self.hc = AttentionGate()
        self.no_spatial = no_spatial
        if not no_spatial:
            self.hw = AttentionGate()

    def forward(self, x):
        x_perm1 = x.permute(0, 2, 1, 3).contiguous()
        x_out1 = self.cw(x_perm1)
        x_out11 = x_out1.permute(0, 2, 1, 3).contiguous()
        x_perm2 = x.permute(0, 3, 2, 1).contiguous()
        x_out2 = self.hc(x_perm2)
        x_out21 = x_out2.permute(0, 3, 2, 1).contiguous()
        if not self.no_spatial:
            x_out = self.hw(x)
            x_out = 1 / 3 * (x_out + x_out11 + x_out21)
        else:
            x_out = 1 / 2 * (x_out11 + x_out21)
        return x_out


class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.Dattention = TripletAttention()
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.Dattention(self.cv2(self.cv1(x))) if self.add else self.Dattention(self.cv2(self.cv1(x)))

class C3_TripleA(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))


四、手把手教你添加Triplet Attention

4.1 细节修改教程

4.1.1 修改一

我们找到如下的目录'yolov5-master/models'在这个目录下创建一个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。


​4.1.2 修改二

然后新建一个__init__.py文件,然后我们在里面添加一行代码。注意标记一个'.'其作用是标记当前目录。


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加)

​​​​


4.1.4 修改四

然后我们找到parse_model方法,按照如下修改->

到此就修改完成了,复制下面的ymal文件即可运行。


4.2 Triplet Attention的yaml文件

4.2.1 Triplet Attention的yaml文件一

下面的配置文件为我修改的Triplet Attention的位置,参数的位置里面什么都不用添加空着就行,大家复制粘贴我的就可以运行,同时我提供多个版本给大家,根据我的经验可能涨点的位置。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3_TripleA, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3_TripleA, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3_TripleA, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3_TripleA, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3_TripleA, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3_TripleA, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3_TripleA, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3_TripleA, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]


4.2.2 Triplet Attention的yaml文件二

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3_TripleA, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3_TripleA, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3_TripleA, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]


4.2.3 Triplet Attention的yaml文件三

注意此版本的我再大目标,小目标,中目标三个曾的后面添加了一个注意力机制,此版本需要显存较大,可以根据自己的需求增删,如果修改大家要注意修改Detect里面的检测层数。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
   [-1, 1, TripletAttention, []], # 18

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 21 (P4/16-medium)
   [-1, 1, TripletAttention, []], # 22

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 25 (P5/32-large)
   [-1, 1, TripletAttention, []], # 26

   [[18, 22, 26], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

4.3 Triplet Attention运行成功截图

附上我的运行记录确保我的教程是可用的。 

4.4 推荐Triplet Attention可添加的位置 

Triplet Attention是一种即插即用的可替换注意力机制的模块,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入Triplet Attention(yaml文件一)。

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加修改后的C3_TripletA可以帮助模型更有效地融合不同层次的特征(yaml文件二)

  3. 检测头:可以再检测头前面添加(yaml文件三)

  4. 检测头中:可以再检测头的内部添加该机制(未提供因为需要修改检测头比较麻烦,后期专栏收费后大家购买专栏之后大家会得到一个包含上百个机制的v5文件里面包含所有的改进机制)


五、本文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv5改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~)如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1321055.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CompleteFuture与Future的比较

CompleteFuture的介绍CompleteFuture的特点CompleteFuture的应用场景CompletableFuture的优缺点Future的介绍Future的特点Future的应用场景Future的优缺点CompletableFuture和Future的区别CompletableFuture和Future的关联关系CompletableFuture和Future的使用示例CompletableF…

每日一练2023.12.18——天梯赛的善良【PTA】

题目链接:L1-079 天梯赛的善良 题目要求: 天梯赛是个善良的比赛。善良的命题组希望将题目难度控制在一个范围内,使得每个参赛的学生都有能做出来的题目,并且最厉害的学生也要非常努力才有可能得到高分。 于是命题组首先将编程能…

ffmpeg入门之Windows开发之二(视频转码)

添加ffmpeg windows编译安装及入门指南-CSDN博客 的头文件和依赖库如下&#xff1a; main 函数如下&#xff1a; extern "C" { #ifdef __cplusplus #define __STDC_CONSTANT_MACROS #endif } extern "C" { #include <libavutil/timestamp.h> #in…

【网络安全】-Linux操作系统—CentOS安装、配置

文章目录 准备工作下载CentOS创建启动盘确保硬件兼容 安装CentOS启动安装程序分区硬盘网络和主机名设置开始安装完成安装 初次登录和配置更新系统安装额外的软件仓库安装网络工具配置防火墙设置SELinux安装文本编辑器配置SSH服务 总结 CentOS是一个基于Red Hat Enterprise Linu…

每天五分钟计算机视觉:谷歌的Inception模块的计算成本的问题

计算成本 Inception 层还有一个问题,就是计算成本的问题,我们来看一下55 过滤器在该模块中的计算成本。 原始图片为28*28*192经过32个5*5的过滤操作,它的计算成本为: 我们输出28*28*32个数字,对于输出的每个数字来说,你都需要执行 55192 (5*5为卷积核的大小,192为通道…

【Spring】12 EmbeddedValueResolverAware 接口

文章目录 1. 简介2. 作用3. 使用3.1 创建并实现接口3.2 配置 Bean3.3 创建启动类3.4 启动 4. 应用场景总结 Spring 框架提供了许多回调接口&#xff0c;以便开发者在 Bean 的生命周期中执行一些特定操作。其中之一是 EmbeddedValueResolverAware 接口&#xff0c;本文将深入探…

智能优化算法应用:基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于社会群体算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.社会群体算法4.实验参数设定5.算法结果6.…

Webpack安装及使用

win系统 全局安装Webpack及使用 前提&#xff1a;使用Webpack必须安装node环境&#xff0c;建议使用nvm管理node版本。 1&#xff1a;查看自己电脑是否安装了node 2&#xff1a;npm install webpack版本号 -g 3&#xff1a;npm install webpack-cli -g -g:表示全局安装 4&…

【重点】【前缀树|字典树】208.实现Trie(前缀树)

题目 前缀树介绍&#xff1a;https://blog.csdn.net/DeveloperFire/article/details/128861092 什么是前缀树 在计算机科学中&#xff0c;trie&#xff0c;又称前缀树或字典树&#xff0c;是一种有序树&#xff0c;用于保存关联数组&#xff0c;其中的键通常是字符串。与二叉查…

6TIM定时器

STM32的定时器功能众多&#xff0c;拥有基本定时功能&#xff0c;输出比较功能&#xff08;如产生PWM波等&#xff09;&#xff0c;输入捕获&#xff08;测量方波信号&#xff09;&#xff0c;读取正交编码器的波形。 1.中断原理 TIM定时器的基本功能是对输入的时钟进行计数&…

java之dbcp连接池介绍和使用方法 简单易懂!!!

文章目录 一、dbcp连接池介绍二、导入的jar包三、代码演示配置文件使用连接池运行结果 一、dbcp连接池介绍 DBCP(DataBase connection pool),数据库连接池。是 apache 上的一个 java 连接池项目&#xff0c;也是 tomcat 使用的连接池组件。单独使用dbcp需要2个包&#xff1a;c…

进制之间的转换——n进制转换为m进制(C/C++实现,简单易懂)

目录 &#x1f308;前言&#xff1a; &#x1f4c1; 什么是进制转换&#xff1a; &#x1f4c1;其他进制转换成十进制&#xff1a; &#x1f4c2;二进制( B ) ——> 十进制( D ) &#x1f4c2;八进制( O ) ——> 十进制( D ) &#x1f4c2;十六进制( H ) ——> 十进制…

Amazon CodeWhisperer 在 vscode 的应用

文章作者:旧花阴 CodeWhisperer 是一款可以帮助程序员更快、更安全地编写代码的工具&#xff0c;可以在他们的开发环境中实时提供代码建议和推荐。亚马逊云科技发布的这款代码生成工具 CodeWhisperer 最大的优势就是对于个人用户免费。以在 vscode 为例&#xff0c;演示安装过程…

优化大数据接口请求

①前情概要&#xff1a;当加载后端的一个接口或去请求一个网站内容比较多时【比如内容大概1.5M】 ②问题&#xff1a;加载时间将非常长&#xff0c;页面白屏时间非常长 1、场景复现 &#xff08;1&#xff09;以天行API请求为例子 async function loadData(){// 请求地址urlc…

论文阅读——Painter

Images Speak in Images: A Generalist Painter for In-Context Visual Learning GitHub - baaivision/Painter: Painter & SegGPT Series: Vision Foundation Models from BAAI 可以做什么&#xff1a; 输入和输出都是图片&#xff0c;并且不同人物输出的图片格式相同&a…

不同版本QT使用qmake时创建QML项目的区别

不同版本QT使用qmake时创建QML项目的区别 文章目录 不同版本QT使用qmake时创建QML项目的区别一、QT5新建QML项目1.1 目录结构1.2 .pro 文件内容1.3 main.cpp1.4 main.qml 二、QT6新建QML项目2.1 目录结构2.2 .pro文件内容2.3 main.cpp2.4 main.qml 三、两个版本使用资源文件的区…

2018年第七届数学建模国际赛小美赛B题世界杯足球赛的赛制安排解题全过程文档及程序

2018年第七届数学建模国际赛小美赛 B题 世界杯足球赛的赛制安排 原题再现&#xff1a; 有32支球队参加国际足联世界杯决赛阶段的比赛。但从2026年开始&#xff0c;球队的数量将增加到48支。由于时间有限&#xff0c;一支球队不能打太多比赛。因此&#xff0c;国际足联提议改变…

【K8S基础】-k8s的核心概念pod

一、Pod 是什么 1.1 Pod 的定义和概念 在Kubernetes中&#xff0c;Pod是创建或部署的最小/最简单的基本单位。一个Pod代表着集群上正在运行的一个进程&#xff0c;它封装了一个或多个应用容器&#xff0c;并且提供了一些共享资源&#xff0c;如网络和存储&#xff0c;每个Pod…

图片速览 PoseGPT:基于量化的 3D 人体运动生成和预测(VQVAE)

papercodehttps://arxiv.org/pdf/2210.10542.pdfhttps://europe.naverlabs.com/research/computer-vision/posegpt/ 方法 将动作压缩到离散空间。使用GPT类的模型预测未来动作的离散索引。使用解码器解码动作得到输出。 效果 提出的方法在HumanAct12&#xff08;一个标准但小规…

单片机计数功能

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、计数器是什么&#xff1f;1.1 应用 二、计数器原理框图及对输入信号的要求2.1 原理框图2.2对输入信号的要求 三、使用步骤3.1 配置为计数模式3.2 装初值3.3…