Java反射机制提供的功能
-
在运行时判断任意一个对象所属的类
-
在运行时构造任意一个类的对象
-
在运行时判断任意一个类所具有的成员变量和方法
-
在运行时获取泛型信息
-
在运行时调用任意一个对象的成员变量和方法
-
在运行时处理注解
-
生成动态代理
Java反射优点和缺点
优点:
- 可以实现动态创建对象和编译,体现出很大的灵活性
缺点:
- 对性能有影响。J使用反射基本上是一种解释操作,我们可以告诉JVM,我们希望做什么并且它满足我们的要求。这类操作总是慢于直接执行相同的操作。
反射例子:
//什么叫反射
public class Test01 {
public static void main(String[] args) throws ClassNotFoundException {
//通过反射获取class对象
Class c1 = Class.forName("User");
System.out.println(c1);
Class c2 = Class.forName("User");
Class c3= Class.forName("User");
Class c4 = Class.forName("User");
//一个类在内存中只有一个class对象
//一个类被加载后,类的整个结构都会被封装在class对象中.
System.out.println(c2.hashCode());
System.out.println(c3.hashCode());
System.out.println(c4.hashCode());
}
}
//实体类: pojo , entity
class User{
private String name;
private int id;
private int age;
public User(){
}
public User(String name, int id, int age) {
this.name = name;
this.id = id;
this.age = age;
}
public void setName(String name) {
this.name = name;
}
public void setId(int id) {
this.id = id;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "User{" +
"name='" + name + '\'' +
", id=" + id +
", age=" + age +
'}';
}
}
Class类
对象照镜子后可以得到的信息:某个类的属性、方法和构造器、某个类到底实现了哪些接口。对于每个类而言,JRE都为其保留一个不变的Class类型的对象。一个Class对象包含了特定某个结构(class/interface/enum/annotation/primitive type/void/])的有关信息。
- Class本身也是一个类
- Class对象只能由系统建立对象
- 一个加载的类在JVM中只会有一个Class实例
- 一个Class对象对应的是一个加载到JVM中的一个.class文件
- 每个类的实例都会记得自己是由哪个Class 实例所生成通过Class可以完整地得到一个类中的所有被加载的结构
- Class类是Reflection的根源,针对任何你想动态加载、运行的类,唯有先获得相应的Class对象
获取Class类的实例
a)若已知具体的类,通过类的class属性获取,该方法最为安全可靠,程序性能最高。
Class clazz= Person.class;
b)已知某个类的实例,调用该实例的getClass()
方法获取Class对象
Class clazz = person.getClass();
c)已知一个类的全类名,且该类在类路径下,可通过Class类的静态方法forName()
获取,
可能抛出ClassNotFoundException
Class clazz= Class.forName("demo01.Student");
d)内置基本数据类型可以直接用类名.Type
import static java.lang.Integer.TYPE;
public class Test02 {
public static void main(String[] args) throws ClassNotFoundException {
Person person = new Student();
System.out.println("这个人是:"+person.name);
//方式一:通过对象获得
Class c1 = person.getClass();
System.out.println(c1.hashCode());
//方式二:forname获得
Class c2 = Class.forName("Student");
System.out.println(c2.hashCode());
//方式三:通过类名.class获得
Class c3 = Student.class;
System.out.println(c3.hashCode());
}
}
class Person{
String name;
public Person() {
}
public Person(String name) {
this.name = name;
}
@Override
public String toString() {
return "Person{" +
"name='" + name + '\'' +
'}';
}
}
class Student extends Person{
public Student() {
this.name = "学生";
}
}
class Teacher extends Person{
public Teacher() {
this.name = "老师";
}
}
哪些类型可以有Class对象?
- class: 外部类,成员(成员内部类,静态内部类),局部内部类,匿名内部类。
- interface:接口
- []:数组
- enum:枚举
- annotation:注解@interface
- primitive type:基本数据类型
- void
import javax.xml.bind.Element;
import java.lang.annotation.ElementType;
public class Test03 {
public static void main(String[] args) {
Class c1 = Object.class; //类
Class c2 = Comparable.class; //接口
Class c3 = String[].class; //一维数组
Class c4 = int[][].class; //二维数组
Class c5 = Override.class; //注解
Class c6 = ElementType.class; //枚举
Class c7 = Integer.class; //基本数据类型
Class c8 = void.class; //void
Class c9 = Class.class; //Class
System.out.println(c1);
System.out.println(c2);
System.out.println(c3);
System.out.println(c4);
System.out.println(c5);
System.out.println(c6);
System.out.println(c7);
System.out.println(c8);
System.out.println(c9);
int[] a = new int[10];
int[] b = new int[100];
System.out.println(a.getClass().hashCode());
System.out.println(b.getClass().hashCode());
}
}
JAVA内存分析
import com.sun.scenario.effect.impl.sw.sse.SSEBlend_SRC_OUTPeer;
public class Test04 {
public static void main(String[] args) {
A a = new A();
System.out.println(A.m);
/*
1.加载到内存,会产生一个类对应class对象
2.链接,链接结束后m=0
3.初始化
<clinit>(){
System.out.println("A类静态代码块初始化“);
m=300;
m=100;
}
m=100
*/
}
}
class A{
static {
System.out.println("A类静态代码快初始化");
m = 300;
}
static int m = 100;
public A() {
System.out.println("A类的无参构造初始化");
}
}
什么时候会发生类的初始化
-
类的主动引用(一定会发生类的初始化)
- 当虚拟机启动,先初始化main方法所在的类
- new一个类的对象
- 调用类的静态成员(除了final常量)和静态方法
- 使用java.lang.reflect包的方法对类进行反射调用
- 当初始化一个类,如果其父类没有被初始化,则先会初始化它的父类
-
类的被动引用(不会发生类的初始化)
- 当访问一个静态域时,只有真正声明这个域的类才会被初始化。如:当通过子类引用父类的静态变量,不会导
致子类初始化 - 通过数组定义类引用,不会触发此类的初始化
- 引用常量不会触发此类的初始化(常量在链接阶段就存入调用类的常量池中了)
- 当访问一个静态域时,只有真正声明这个域的类才会被初始化。如:当通过子类引用父类的静态变量,不会导
//测试类什么时候会初始化
public class Test05 {
static {
System.out.println("mian类被加载");
}
public static void main(String[] args) throws ClassNotFoundException {
//主动引用
Son son = new Son();
//反射也会产生主动引用
//Class.forName("Son");
}
}
class Father{
static int b =2;
static {
System.out.println("父类被加载");
}
}
class Son extends Father{
static {
System.out.println("子类被加载");
m = 300;
}
static int m =100;
static final int M = 1;
}
类加载器
类加载的作用:将class文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时数据结构,然后在堆中生成一个代表这个类的java.lang.Class对象,作为方法区中类数据的访问入口。
类缓存:标准的JavaSE类加载器可以按要求查找类,但一旦某个类被加载到类加载器中,它将维持加载(缓存)一段时间。不过JVM垃圾回收机制可以回收这些Class对象
类加载的作用
import com.sun.scenario.effect.impl.sw.sse.SSEBlend_SRC_OUTPeer;
public class Test06 {
public static void main(String[] args) throws ClassNotFoundException {
//获取系统类的加载器
ClassLoader systemClassLoader = ClassLoader.getSystemClassLoader();
System.out.println(systemClassLoader);
//获取系统类加载器的父类加载器-->扩展类加载器
ClassLoader parent = systemClassLoader.getParent();
System.out.println(parent);
//获取扩展类加载器的父类加载器-->根加载器(c/c++)
ClassLoader parent1 = parent.getParent();
System.out.println(parent1);
//测试当前类是哪个加载器加载的
ClassLoader classLoader = Class.forName("Test06").getClassLoader();
System.out.println(classLoader);
}
}
创建运行时类的对象
获取运行时类的完整结构
通过反射获取运行时类的完整结构
Field、Method.Constructor、Superclass、Interface、Annotation
- 实现的全部接口
- 所继承的父类
- 全部的构造器
- 全部的方法全部的Field
- 注解
- 。。。
import java.lang.reflect.Field;
public class Test07 {
public static void main(String[] args) throws ClassNotFoundException {
Class c1 = Class.forName("User");
// User user = new User();
// c1 = user.getClass();
//获得类的名字
System.out.println(c1.getName()); //获得包名+类名
System.out.println(c1.getSimpleName()); //获得类名
//获得类的属性
System.out.println("=============");
Field[] fileds = c1.getFields();
// for (Field file : fileds) {
// System.out.println(field);
// }
Field[] fields = c1.getFields();
fileds = c1.getDeclaredFields();
for (Field field : fileds) {
System.out.printf(String.valueOf(field));
}
}
}