单机架构到分布式架构的演变

news2025/1/16 3:37:31

目录

1.单机架构

2.应用数据分离架构

3.应用服务集群架构

4.读写分离 / 主从分离架构

5.引入缓存 —— 冷热分离架构

6.垂直分库

7.业务拆分 —— 微服务

8.容器化引入——容器编排架构

总结


1.单机架构

        初期,我们需要利用我们精干的技术团队,快速将业务系统投入市场进行检验,并且可以迅速响应变化要求。但好在前期用户访问量很少,没有对我们的性能、安全等提出很高的要求,而且系统架构简单,无需专业的运维团队,所以选择单机架构是合适的。

用户在浏览器中输入 www.baidu.com,首先经过 DNS 服务将域名解析成 IP 地址10.102.41.1,随后浏览器访问该 IP 对应的应用服务。

优点:部署简单,成本低

缺点:存在严重的性能瓶颈, 数据库和应用互相竞争资源

2.应用数据分离架构

        随着系统的上线,我们不出意外地获得了成功。市场上出现了一批忠实于我们的用户,使得系统的访问量逐步上升,逐渐逼近了硬件资源的极限,同时团队也在此期间积累了对业务流程的一批经验。面对当前的性能压力,我们需要未雨绸缪去进行系统重构、架构挑战,以提升系统的承载能力。但由于预算仍然很紧张,我们选择了将应用和数据分离的做法,可以最小代价的提升系统的承载能力。

和之前架构的主要区别在于将数据库服务独立部署在同一个数据中心的其他服务器上,应用服务通过网络访问数据。

优点:成本相对可控,性能相比单机有提升,数据库单独隔离,不会因为应用把数据库搞坏,有一定的容灾能力

缺点:硬件成本变高,性能有瓶颈,无法应对海量并发

3.应用服务集群架构

        我们的系统受到了用户的欢迎,并且出现了爆款,单台应用服务器已经无法满足需求了。我们的单机应用服务器首先遇到了瓶颈,摆在我们技术团队面前的有两种方案,大家针对方案的优劣展示了热烈的讨论:
• 垂直扩展 / 纵向扩展 Scale Up。通过购买性能更优、价格更高的应用服务器来应对更多的流量。这种方案的优势在于完全不需要对系统软件做任何的调整;但劣势也很明显:硬件性能和价格的增长关系是非线性的,意味着选择性能 2 倍的硬件可能需要花费超过 4 倍的价格,其次硬件性能提升是有明显上限的。
• 水平扩展 / 横向扩展 Scale Out。通过调整软件架构,增加应用层硬件,将用户流量分担到不同的应用层服务器上,来提升系统的承载能力。这种方案的优势在于成本相对较低,并且提升的上限空间也很大。但劣势是带给系统更多的复杂性,需要技术团队有更丰富的经验。经过团队的学习、调研和讨论,最终选择了水平扩展的方案,来解决该问题,但这需要引入一个新的组件 —— 负载均衡:为了解决用户流量向哪台应用服务器分发的问题,需要一个专门的系统组件做流量分发。实际中负载均衡不仅仅指的是工作在应用层的,甚至可能是其他的网络层之中。同时流量调度算法也有很多种,这里简单介绍几种较为常见的:
• Round-Robin 轮询算法。即非常公平地将请求依次分给不同的应用服务器。
• Weight-Round-Robin 轮询算法。为不同的服务器(比如性能不同)赋予不同的权
重(weight),能者多劳。
• 一致哈希散列算法。通过计算用户的特征值(比如 IP 地址)得到哈希值,根据哈希结果做分发,优点是确保来自相同用户的请求总是被分给指定的服务器。也就是我们平时遇到的专项客户经理服务。

优点: 应用服务高可用:应用满足高可用,不会一个服务出问题整个站点挂掉;应用服务具备一定高性能:如果不访问数据库,应用相关处理通过扩展可以支持海量请求快速响应;应用服务有一定扩展能力:支持横向扩展

缺点:数据库成为性能瓶颈,无法应对数据库的海量查询;数据库是单点,没有高可用;运维工作增多,扩展后部署运维工作增多,需要开发对应的工具应对快速部署;硬件成本较高

4.读写分离 / 主从分离架构

        前面提到,我们把用户的请求通过负载均衡分发到不同的应用服务器之后,可以并行处理了,并且可以随着业务的增长,可以动态扩张服务器的数量来缓解压力。但是现在的架构里,无论扩展多少台服务器,这些请求最终都会从数据库读写数据,到一定程度之后,数据的压力称为系统承载能力的瓶颈点。我们可以像扩展应用服务器一样扩展数据库服务器么?答案是否定的,因为数据库服务有其特殊性:如果将数据分散到各台服务器之后,数据的一致性将无法得到保障。所谓数据的一致性,此处是指:针对同一个系统,无论何时何地,我们都应该看到一个始终维持统一的数据。想象一下,银行管理的账户金额,如果收到一笔转账之后,一份数据库的数据修改了,但另外的数据库没有修改,则用户得到的存款金额将是错误的。我们采用的解决办法是这样的,保留一个主要的数据库作为写入数据库,其他的数据库作为从属数据库。从库的所有数据全部来自主库的数据,经过同步后,从库可以维护着与主库一致的数据。然后为了分担数据库的压力,我们可以将写数据请求全部交给主库处理,但读请求分散到各个从库中。由于大部分的系统中,读写请求都是不成比例的,例如 100 次读 1 次写,所以只要将读请求由各个从库分担之后,数据库的压力就没有那么大了。当然这个过程不是无代价的,主库到从库的数据同步其实是有时间成本的,但这个问题我们暂时不做进一步探讨。

优点: 数据库的读取性能提升;读取被其他服务器分担,写的性能间接提升;数据库有从库,数据库的可用性提高了

缺点:热点数据的频繁读取导致数据库负载很高;当同步挂掉,或者同步延迟比较大时,写库和读库的数据不一致;服务器成本需要进一步增加

5.引入缓存 —— 冷热分离架构

        随着访问量继续增加,发现业务中一些数据的读取频率远大于其他数据的读取频率。我们把这部分数据称为热点数据,与之相对应的是冷数据。针对热数据,为了提升其读取的响应时间,可以增加本地缓存,并在外部增加分布式缓存,缓存热门商品信息或热门商品的 html 页面等。通过缓存能把绝大多数请求在读写数据库前拦截掉,大大降低数据库压力。其中涉及的技术包括:使用 memcached 作为本地缓存,使用Redis 作为分布式缓存,还会涉及缓存一致性、缓存穿透/击穿、缓存雪崩、热点数据集中失效等问题。

优点:大幅降低对数据库的访问请求,性能提升非常明显;

缺点:带来了缓存一致性,缓存击穿,缓存失效,缓存雪崩等问题;服务器成本需要进一步增加;业务体量支持变大后,数据不断增加,数据库单库太大,单个表体量也太大,数据查询会很慢,导致数据库再度成为系统瓶颈 

6.垂直分库

        随着业务的数据量增大,大量的数据存储在同一个库中已经显得有些力不从心了,所以可以按照业务,将数据分别存储。比如针对评论数据,可按照商品 ID 进行 hash,路由到对应的表中存储;针对支付记录,可按照小时创建表,每个小时表继续拆分为小表,使用用户 ID 或记录编号来路由数据。只要实时操作的表数据量足够小,请求能够足够均匀的分发到多台服务器上的小表,那数据库就能通过水平扩展的方式来提高性能。其中前面提到的 Mycat 也支持在大表拆分为小表情况下的访问控制。这种做法显著的增加了数据库运维的难度,对 DBA 的要求较高。数据库设计到这种结构时,已经可以称为分布式数据库,但是这只是一个逻辑的数据库整体,数据库里不同的组成部分是由不同的组件单独来实现的,如分库分表的管理和请求分发,由 Mycat 实现,SQL 的解析由单机的数据库实现,读写分离可能由网关和消息队列来实现,查询结果的汇总可能由数据库接口层来实现等等,这种架构其实是 MPP(大规模并行处理)架构的一类实现。

优点:数据库吞吐量大幅提升,不再是瓶颈;

缺点:跨库join、分布式事务等问题,这些需要对应的去进行解决,目前的mpp都有对应的解决方案;数据库和缓存结合目前能够抗住海量的请求,但是应用的代码整体耦合在一起,修改一行代码需要整体重新发布 

7.业务拆分 —— 微服务

        随着人员增加,业务发展,我们将业务分给不同的开发团队去维护,每个团队独立实现自己的微服务,然后互相之间对数据的直接访问进行隔离,可以利用 Gateway、消息总线等技术,实现相互之间的调用关联。甚至可以把一些类似用户管理等业务提成公共服务。

优点: 灵活性高:服务独立测试、部署、升级、发布;独立扩展:每个服务可以各自进行扩展;提高容错性:一个服务问题并不会让整个系统瘫痪;新技术的应用容易:支持多种编程语言

缺点:运维复杂度高:业务不断发展,应用和服务都会不断变多,应用和服务的部署变得复杂,同一台服务器上部署多个服务还要解决运行环境冲突的问题,此外,对于如大促这类需要动态扩缩容的场景,需要水平扩展服务的性能,就需要在新增的服务上准备运行环境,部署服务等,运维将变得十分困难;资源使用变多:所有这些独立运行的微服务都需要需要占用内存和 CPU ;处理故障困难:一个请求跨多个服务调用,需要查看不同服务的日志完成问题定位

8.容器化引入——容器编排架构

        随着业务增长,然后发现系统的资源利用率不高,很多资源用来应对短时高并发,平时又闲置,需要动态扩缩容,还没有办法直接下线服务器,而且开发、测试、生产每套环境都要隔离的环境,运维的工作量变的非常大。容器化技术的出现给这些问题的解决带来了新的思路。
        目前最流行的容器化技术是 Docker,最流行的容器管理服务是 Kubernetes(K8S),应用/服务可以打包为 Docker 镜像,通过 K8S 来动态分发和部署镜像。Docker 镜像可理解为一个能运行你的应用/服务的最小的操作系统,里面放着应用/服务的运行代码,运行环境根据实际的需要设置好。把整个“操作系统”打包为一个镜像后,就可以分发到需要部署相关服务的机器上,直接启动 Docker 镜像就可以把服务起起来,使服务的部署和运维变得简单。服务
        通常会有生产和研发 k8s 集群,一般不会公用,而研发集群通过命名空间来完成应用隔离,有的公司按照研发目的划分为研发和测试集群,有的公司通过组织架构完成部门间的资源复用。

优点:部署、运维简单快速:一条命令就可以完成几百个服务的部署或者扩缩容;隔离性好:容器与容器之间文件系统、网络等互相隔离,不会产生环境冲突;轻松支持滚动更新:版本间切换都可以通过一个命令完成升级或者回滚

缺点:技术栈变多,对研发团队要求高;机器还是需要公司自身来管理,在非大促的时候,还是需要闲置着大量的机器资源来应对大促,机器自身成本和运维成本都极高,资源利用率低,可以通过购买云厂商服务器解决。 

总结

        至此,一个还算合理的高可用、高并发系统的基本雏形已显。注意,以上所说的架构演变顺序只是针对某个侧面进行单独的改进,在实际场景中,可能同一时间会有几个问题需要解决,或者可能先达到瓶颈的是另外的方面,这时候就应该按照实际问题实际解决。如在政府类的并发量可能不大,但业务可能很丰富的场景,高并发就不是重点解决的问题,此时优先需要的可能会是丰富需求的解决方案。对于单次实施并且性能指标明确的系统,架构设计到能够支持系统的性能指标要求就足够了,但要留有扩展架构的接口以便不备之需。对于不断发展的系统,如电商平台,应设计到能满足下一阶段用户量和性能指标要求的程度,并根据业务的增长不断的迭代升级架构,以支持更高的并发和更丰富的业务。所谓的“大数据”其实是海量数据采集清洗转换、数据存储、数据分析、数据服务等场景解决方案的一个统称,在每一个场景都包含了多种可选的技术,如数据采集有Flume、Sqoop、Kettle 等,数据存储有分布式文件系统 HDFS、FastDFS,NoSQL数据库 HBase、MongoDB 等,数据分析有 Spark 技术栈、机器学习算法等。总的来说大数据架构就是根据业务的需求,整合各种大数据组件组合而成的架构,一般会提供分布式存储、分布式计算、多维分析、数据仓库、机器学习算法等能力。而服务端架构更多指的是应用组织层面的架构,底层能力往往是由大数据架构来提供。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1318576.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【算法Hot100系列】盛最多水的容器

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【LeetCode】数组精选17题——双指针、滑动窗口、前缀和

目录 快慢指针: 1. 移动零(简单) 2. 复写零(简单) 对撞指针: 1. 两数之和 II - 输入有序数组(中等) 2. 三数之和(中等) 3. 有效三角形的个数&#xff…

【员工工资册】————大一期末答辩近满分作业分享

前言 大家好吖,欢迎来到 YY 滴项目系列 ,热烈欢迎! 本章主要内容面向接触过C语言的老铁 主要内容含: 欢迎订阅 YY滴C专栏!更多干货持续更新!以下是传送门! PS:以下内容是部分展示&am…

全球汽车行业的数字化转型:产品和后端的渐进之旅

如何管理汽车行业的数字化转型?在我们本篇文章中了解更多有关如何设定长期目标的信息。 正在改变汽车行业的26个数字化主题 最近一篇关于汽车行业数字化转型的论文确定了26个数字技术主题(论文详情请点击阅读原文),分为三个主要集群: 1)驾驶…

RabbitMQ手动应答与持久化

1.SleepUtil线程睡眠工具类 package com.hong.utils;/*** Description: 线程睡眠工具类* Author: hong* Date: 2023-12-16 23:10* Version: 1.0**/ public class SleepUtil {public static void sleep(int second) {try {Thread.sleep(1000*second);} catch (InterruptedExcep…

深入理解Java关键字volatile

前置知识-了解以下CPU结构 如下图所示,每个CPU都会有自己的一二级缓存,其中一级缓存分为数据缓存和指令缓存,这些缓存的数据都是从内存中读取的,而且每次都会加载一个cache line,关于cache line的大小可以使用命令cat…

DOS 系统(命令行)

文章目录 DOS 系统DOS 常用命令DOS 高级命令DOS 批处理命令DOS 应用场景 DOS 系统 操作系统的发展史(DOS/Windows篇) DOS操作系统的历史 DOS(Disk Operating System) 是 磁盘操作系统 的缩写,是一种早期的个人计算机操…

Mybatis的插件运⾏原理,如何编写⼀个插件?

🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot 🌺 仓库主页: Gitee 💫 Github 💫 GitCode 💖 欢迎点赞…

Linux:TCP 序列号简介

文章目录 1. 前言2. 什么是 TCP 序列号?3. TCP 序号 的 初始值设置 和 后续变化过程3.1 三次握手 连接建立 期间 客户端 和 服务端 序号 的 变化过程3.1.1 客户端 socket 初始序号 的 建立3.1.2 服务端 socket 初始序号 的 建立3.1.3 客户端 socket 接收 服务端 SAC…

动态规划优化技巧

一、斐波那契系列 1、滚动数组优化空间复杂度 2、dp数组初始化/处理边界优化 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

《Global illumination with radiance regression functions》

总结一下最近看的这篇结合神经网络的全局光照论文 这是一篇2013年TOG的论文。 介绍 论文的主要思想是利用了神经网络的非线性特性去拟合全局光照中的间接光照部分,采用了基础的2层MLP去训练,最终能实现一些点光源、glossy材质的光照渲染。为了更好的理…

【POI的如何做大文件的写入】

🔓POI如何做大文件的写入 🏆文件和POI之间的区别是什么?🏆POI对于当今的社会发展有何重要性?🏆POI大文件的写入🎖️使用XSSF写入文件🎖️使用SXSSFWorkbook写入文件🎖️对…

《ThreadLocal使用与学习总结:2023-12-15》由浅入深全面解析ThreadLocal

由浅入深全面解析ThreadLocal 目录 由浅入深全面解析ThreadLocal简介基本使用ThreadLocal与synchronized的区别ThreadLocal现在的设计(JDK1.8)ThreadLocal核心方法源码分析ThreadLocalMap源码分析弱引用与内存泄露(内存泄漏和弱引用没有直接关…

代码随想录算法训练营第十四天 | 二叉树理论基础、递归遍历 、迭代遍历、统一迭代

今天学习内容:二叉树理论基础、递归遍历 、迭代遍历、统一迭代 讲解:代码随想录 二叉树题目思维导图如下,来自代码随想录。 1.二叉树理论基础 1.1二叉树种类 满二叉树 完全二叉树 二叉搜索树 平衡二叉搜索树 C中map、set、multimap&…

[Verilog] Verilog 操作符与表达式

主页: 元存储博客 文章目录 前言1. 操作符2. 操作数3 表达式总结 前言 1. 操作符 图片来源: https://www.runoob.com/ Verilog语言中使用的操作符包括: 算术操作符:加法()、减法(-)、乘法(*)、除法(/)、取模(%)、自增()、自减(–…

Vue中插槽的使用

目录 一、默认插槽 (1)概念 (2)代码展示 (3)后备内容 二、具名插槽 (1)概念 (2)代码展示 三、作用域插槽 (1)概念 &#xff0…

【经典LeetCode算法题目专栏分类】【第2期】组合与排列问题系列

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 组合总和1 class So…

【计算机组成原理】存储系统基本概念与基本组成

📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…

FRP内网映射家用服务器至公网访问

兄弟们,服务器到货了,后续与大家分享内容就用它了。我预装的操作系统是Centos8,首先要解决的是远程访问的问题。 【特别注意】下述的端口,记得在阿里云安全组配置中放开端口入规则!! 1. FRP服务器配置 之前我有购买…

UDP多人聊天室

讲解的是TCP和UDP两种通信方式它们都有着自己的优点和缺点 这两种通讯方式不通的地方就是TCP是一对一通信 UDP是一对多的通信方式 UDP通信 主要的方向是一对多通信方式 UDP通信就是一下子可以通信多个对象,这就是UDP对比TCP的优势,UDP它的原理呢 就是…