三角形内心的性质
三角形内切圆的圆心称为三角形的内心。内心也是三角形三个角的角平分线的交点
性质1
1.1
设
I
I
I为
△
A
B
C
△ABC
△ABC内一点,则
I
I
I为
△
A
B
C
△ABC
△ABC内心的充要条件是下列条件之一:
1.1.1
I
I
I到
△
A
B
C
△ABC
△ABC三边距离相等
充分性证明:
设 I I I到三边距离为 r r r
以 I I I为圆心, r r r为半径作圆
因为圆心 I I I到 A B AB AB的距离为 r r r等于半径
所以 A B AB AB是圆的切线,同理BC,AC也是圆的切线
所以该圆是 △ A B C △ABC △ABC的内切圆,故 I I I是 △ A B C △ABC △ABC的内心
必要性证明:
当 I I I是 △ A B C △ABC △ABC的内心时,
设圆的切点分别为 D , E , F D,E,F D,E,F,则 I D ⊥ B C , I E ⊥ A C , I F ⊥ A B ID⊥BC,IE⊥AC,IF⊥AB ID⊥BC,IE⊥AC,IF⊥AB
而 I D = I E = I F = r ID=IE=IF=r ID=IE=IF=r,所以 I I I到 △ A B C △ABC △ABC三边距离相等
1.1.2 ∠ A I B = 90 ° + 1 2 ∠ C , ∠ B I C = 90 ° + 1 2 ∠ A , ∠ C I A = 90 ° + 1 2 ∠ B ∠AIB=90°+\frac{1}{2}∠C,∠BIC=90°+\frac{1}{2}∠A,∠CIA=90°+\frac{1}{2}∠B ∠AIB=90°+21∠C,∠BIC=90°+21∠A,∠CIA=90°+21∠B
充分性证明:
∠ A I B + ∠ A B I + ∠ B A I = 180 ° ∠AIB+∠ABI+∠BAI=180° ∠AIB+∠ABI+∠BAI=180°
∠ C + ∠ B A C + ∠ A B C = 180 ° ∠C+∠BAC+∠ABC=180° ∠C+∠BAC+∠ABC=180°
∵ ∠ A I B = 90 ° + 1 2 ∠ C ∵∠AIB=90°+\frac{1}{2}∠C ∵∠AIB=90°+21∠C
∴ ( ∠ A B I + ∠ B A I ) = 1 2 ( ∠ B A C + ∠ A B C ) ∴(∠ABI+∠BAI)=\frac{1}{2}(∠BAC+∠ABC) ∴(∠ABI+∠BAI)=21(∠BAC+∠ABC)
同理有: ∴ ( ∠ B C I + ∠ C B I ) = 1 2 ( ∠ A C B + ∠ A B C ) ∴(∠BCI+∠CBI)=\frac{1}{2}(∠ACB+∠ABC) ∴(∠BCI+∠CBI)=21(∠ACB+∠ABC)和 ∴ ( ∠ A C I + ∠ C A I ) = 1 2 ( ∠ B A C + ∠ A C B ) ∴(∠ACI+∠CAI)=\frac{1}{2}(∠BAC+∠ACB) ∴(∠ACI+∠CAI)=21(∠BAC+∠ACB)
可解出 A I AI AI为 ∠ B A C ∠BAC ∠BAC的角平分线, B I BI BI为 ∠ A B C ∠ABC ∠ABC的角平分线, C I CI CI为 ∠ A C B ∠ACB ∠ACB的角平分线
所以 I I I是 △ A B C △ABC △ABC的内心必要性证明:
∠ A I B + ∠ A B I + ∠ B A I = 180 ° ∠AIB+∠ABI+∠BAI=180° ∠AIB+∠ABI+∠BAI=180°
∠ C + ∠ B A C + ∠ A B C = 180 ° ∠C+∠BAC+∠ABC=180° ∠C+∠BAC+∠ABC=180°
∵ ∠ B A C = 2 ∠ B A I , ∠ A B C = 2 ∠ A B I ∵∠BAC=2∠BAI,∠ABC=2∠ABI ∵∠BAC=2∠BAI,∠ABC=2∠ABI
∴ ∠ A I B = 90 ° + 1 2 ∠ C ∴∠AIB=90°+\frac{1}{2}∠C ∴∠AIB=90°+21∠C
另外两个同理
1.1.3
△
A
I
B
,
△
B
I
C
,
△
C
I
A
△AIB,△BIC,△CIA
△AIB,△BIC,△CIA的外心均在
△
A
B
C
△ABC
△ABC的外接圆上
由性质1.1.2可以证明
1.2
设 I I I为 △ A B C △ABC △ABC内一点, A I AI AI所在直线交 △ A B C △ABC △ABC的外接圆于 D D D。则 I I I为 △ A B C △ABC △ABC内心的充要条件是 I D = D B = D C ID=DB=DC ID=DB=DC
充分性证明:
∵ D B = D C ∵DB=DC ∵DB=DC
∴ ∠ B A D = ∠ C A D ∴∠BAD=∠CAD ∴∠BAD=∠CAD
∴ A I ∴AI ∴AI是 ∠ B A C ∠BAC ∠BAC的角平分线
∵ I D = D B ∵ID=DB ∵ID=DB
∴ ∠ D B I = ∠ D I B ∴∠DBI=∠DIB ∴∠DBI=∠DIB
∠ C B I + ∠ C B D = ∠ A B I + ∠ B A I ∠CBI+∠CBD=∠ABI+∠BAI ∠CBI+∠CBD=∠ABI+∠BAI
故 ∠ C B I = ∠ A B I ∠CBI=∠ABI ∠CBI=∠ABI
所以 B I BI BI是 ∠ A B C ∠ABC ∠ABC的角平分线
因此 I I I是内心
必要性证明:
∵ I ∵I ∵I是内心
∴ ∠ B A D = ∠ C A D ∴∠BAD=∠CAD ∴∠BAD=∠CAD
∴ D 是 B C ⌢ 的中点 ∴ D是\overset{\frown}{BC}的中点 ∴D是BC⌢的中点
故 D B = D C DB=DC DB=DC
欲证 I D = D B ID=DB ID=DB,只需证 ∠ D B I = ∠ D I B ∠DBI=∠DIB ∠DBI=∠DIB
∵ ∠ D B I = ∠ C B I + ∠ D B C = ∠ A B I + ∠ D C B = ∠ A B I + ∠ D A B = ∠ D I B ∵∠DBI=∠CBI+∠DBC=∠ABI+∠DCB=∠ABI+∠DAB=∠DIB ∵∠DBI=∠CBI+∠DBC=∠ABI+∠DCB=∠ABI+∠DAB=∠DIB
∴ I D = D B = D C ∴ID=DB=DC ∴ID=DB=DC
1.3
一条直线截三角形,把周长 l l l与面积 S S S分为对应的两部分 l 1 , l 2 l_1,l_2 l1,l2与 S 1 , S 2 S_1,S_2 S1,S2,则此直线经过三角形内心的充要条件是 l 1 l 2 = S 1 S 2 \frac{l_1}{l_2}=\frac{S_1}{S_2} l2l1=S2S1
充分性证明:
作 ∠ A ∠A ∠A的角平分线与PQ交于 I I I, I I I在三边上的射影为 D , E , F D,E,F D,E,F
则 I E = I F IE=IF IE=IF,所以 S 1 = l 1 ⋅ I E S_1=l_1·IE S1=l1⋅IE, S 2 = I D ⋅ B C + ( B P + C Q ) ⋅ I E S_2=ID·BC+(BP+CQ)·IE S2=ID⋅BC+(BP+CQ)⋅IE
比较可得 I D = I E ID=IE ID=IE,故 I I I为内心
必要性证明:
S 1 S 2 = A P ⋅ I F + A Q ⋅ I E I D ⋅ B C + I E ⋅ C Q + I F ⋅ B P \frac{S_1}{S_2}=\frac{AP·IF+AQ·IE}{ID·BC+IE·CQ+IF·BP} S2S1=ID⋅BC+IE⋅CQ+IF⋅BPAP⋅IF+AQ⋅IE
因为 I I I是内心,所以 I D = I E = I F ID=IE=IF ID=IE=IF
故 S 1 S 2 = A P + A Q B C + B P + C Q = l 1 l 2 \frac{S_1}{S_2}=\frac{AP+AQ}{BC+BP+CQ}=\frac{l_1}{l_2} S2S1=BC+BP+CQAP+AQ=l2l1
性质2
设 I I I为 △ A B C △ABC △ABC的内心, B C = a , C A = b , A B = c BC=a,CA=b,AB=c BC=a,CA=b,AB=c, I I I在 △ A B C △ABC △ABC上的射影为 D , E , F D,E,F D,E,F,内切圆半径为 r r r,半周长 p = a + b + c 2 p=\frac{a+b+c}{2} p=2a+b+c
2.1
S △ A B C = p r S_{△ABC}=pr S△ABC=pr
证明:
S △ A B I = 1 2 A B ⋅ I F = 1 2 c r S_{△ABI}=\frac{1}{2}AB·IF=\frac{1}{2}cr S△ABI=21AB⋅IF=21cr, S △ A C I = 1 2 A C ⋅ I E = 1 2 b r S_{△ACI}=\frac{1}{2}AC·IE=\frac{1}{2}br S△ACI=21AC⋅IE=21br, S △ B C I = 1 2 B C ⋅ I D = 1 2 a r S_{△BCI}=\frac{1}{2}BC·ID=\frac{1}{2}ar S△BCI=21BC⋅ID=21ar
累加得: S △ A B C = 1 2 r ( a + b + c ) = p r S_{△ABC}=\frac{1}{2}r(a+b+c)=pr S△ABC=21r(a+b+c)=pr
2.2
A E = A F = p − a , B D = B F = p − b , C E = C D = p − c AE=AF=p-a,BD=BF=p-b,CE=CD=p-c AE=AF=p−a,BD=BF=p−b,CE=CD=p−c
证明:
由切线长定理得: A E = A F , B D = B F , C E = C D AE=AF,BD=BF,CE=CD AE=AF,BD=BF,CE=CD
设 A E = A F = x , B D = B F = y , C E = C D = z AE=AF=x,BD=BF=y,CE=CD=z AE=AF=x,BD=BF=y,CE=CD=z
则 x + z = b , x + y = c , y + z = a x+z=b,x+y=c,y+z=a x+z=b,x+y=c,y+z=a
因此 A E = A F = p − a , B D = B F = p − b , C E = C D = p − c AE=AF=p-a,BD=BF=p-b,CE=CD=p-c AE=AF=p−a,BD=BF=p−b,CE=CD=p−c
2.3
a b c r = p ⋅ A I ⋅ B I ⋅ C I abcr=p·AI·BI·CI abcr=p⋅AI⋅BI⋅CI
证明:
令 A I AI AI延长后与 B C BC BC交于A1,利用Stewart定理可得 A A 1 2 = b c ( a + b + c ) ( b + c − a ) ( b + c ) 2 AA_1^2=\frac{bc(a+b+c)(b+c-a)}{(b+c)^2} AA12=(b+c)2bc(a+b+c)(b+c−a)
再利用 A I I A 1 = b + c a \frac{AI}{IA_1}=\frac{b+c}{a} IA1AI=ab+c,可得 A I = b c ( b + c − a ) a + b + c AI=\sqrt{\frac{bc(b+c-a)}{a+b+c}} AI=a+b+cbc(b+c−a)
注意到海伦公式即得 a b c r = p ⋅ A I ⋅ B I ⋅ C I abcr=p·AI·BI·CI abcr=p⋅AI⋅BI⋅CI
性质3
过
△
A
B
C
△ABC
△ABC内心
I
I
I任作一条直线,分别交
A
B
,
A
C
AB,AC
AB,AC于
P
,
Q
P,Q
P,Q,则
A
B
A
P
⋅
A
C
+
A
C
A
Q
⋅
A
B
=
A
B
+
B
C
+
C
A
\frac{AB}{AP}·AC+\frac{AC}{AQ}·AB=AB+BC+CA
APAB⋅AC+AQAC⋅AB=AB+BC+CA
证明:
A D A I = S 四边形 A P D Q S △ A P Q = S △ A P D + S △ A Q D S △ A P Q = A C A Q ⋅ S △ A B D S △ A B C + A B A P ⋅ S △ A C D S △ A B C = A C A Q ⋅ B D B C + A B A P ⋅ C D B C \frac{AD}{AI}=\frac{S_{四边形APDQ}}{S_{△APQ}}=\frac{S_{△APD}+S_{△AQD}}{S_{△APQ}}=\frac{AC}{AQ}·\frac{S_{△ABD}}{S_{△ABC}}+\frac{AB}{AP}·\frac{S_{△ACD}}{S_{△ABC}}=\frac{AC}{AQ}·\frac{BD}{BC}+\frac{AB}{AP}·\frac{CD}{BC} AIAD=S△APQS四边形APDQ=S△APQS△APD+S△AQD=AQAC⋅S△ABCS△ABD+APAB⋅S△ABCS△ACD=AQAC⋅BCBD+APAB⋅BCCD
∵ I ∵I ∵I是内心
∴ A D A M = a + b + c b + c , B D B C = c b + c , C D B C = b b + c ∴\frac{AD}{AM}=\frac{a+b+c}{b+c},\frac{BD}{BC}=\frac{c}{b+c},\frac{CD}{BC}=\frac{b}{b+c} ∴AMAD=b+ca+b+c,BCBD=b+cc,BCCD=b+cb
代入即证
性质4
设 △ A B C △ABC △ABC的内心为 I I I, △ A B C △ABC △ABC内一点P在 B A , C A , A B BA,CA,AB BA,CA,AB上的射影分别为 D , E , F D,E,F D,E,F,当 P P P与 I I I重合时, B C P D + C A P E + A B P F \frac{BC}{PD}+\frac{CA}{PE}+\frac{AB}{PF} PDBC+PECA+PFAB的值最小
证明:
B C ⋅ P D + C A ⋅ P E + A B ⋅ P F = 2 S △ A B C BC·PD+CA·PE+AB·PF=2S_{△ABC} BC⋅PD+CA⋅PE+AB⋅PF=2S△ABC
由Cauchy不等式得: B C P D + C A P E + A B P F ≥ ( B C + C A + A B ) 2 B C ⋅ P D + C A ⋅ P E + A B ⋅ P F = ( a + b + c ) 2 2 S △ A B C \frac{BC}{PD}+\frac{CA}{PE}+\frac{AB}{PF}\ge \frac{(BC+CA+AB)^2}{BC·PD+CA·PE+AB·PF}=\frac{(a+b+c)^2}{2S_{△ABC}} PDBC+PECA+PFAB≥BC⋅PD+CA⋅PE+AB⋅PF(BC+CA+AB)2=2S△ABC(a+b+c)2
取等条件为 B C P D B C ⋅ P D = C A P E C A ⋅ P E = A B P F A B ⋅ P F \frac{\frac{BC}{PD}}{BC·PD}=\frac{\frac{CA}{PE}}{CA·PE}=\frac{\frac{AB}{PF}}{AB·PF} BC⋅PDPDBC=CA⋅PEPECA=AB⋅PFPFAB,即 P D = P E = P F PD=PE=PF PD=PE=PF,所以 P P P与 I I I重合