【Spark精讲】Spark存储原理

news2024/11/24 15:56:08

目录

类比HDFS的存储架构

Spark的存储架构

存储级别

RDD的持久化机制

RDD缓存的过程

Block淘汰和落盘


类比HDFS的存储架构

  HDFS集群有两类节点以管理节点-工作节点模式运行,即一个NameNode(管理节点)和多个DataNode(工作节点)。

  • Namenode管理文件系统的命名空间。它维护着文件系统树及整棵树内的所有文件和目录。这些信息以两个文件形式永久保存在本地磁盘上:命名空间镜像文件和编辑日志文件。Namenode也记录着每个文件中各个块所在的数据节点信息,但是它并不会永久保存块的位置信息,因为这些信息会在系统启动时根据数据节点信息重建。
  • DataNode负责数据块的读写操作。DataNode在存储数据的时候是按照block为单位读写数据的。block是hdfs读写数据的基本单位。 一个数据块在datanode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。

Spark的存储架构

Spark的存储模块类似HDFS的架构,分为BlockManager和BlockManagerMaster。

BlockManager负责本节点的数据块的读写操作。BlockManagerMaster负责记录每个节点的元数据信息,如每个数据块都存在于哪些节点上。BlockManager也可以接收BlockManagerMaster发来的信息对本节点的数据进行删除等操作。

BlockManager和BlockManagerMaster之间通过RPC的Endpoint通信。BlockManagerMaster只存在于Driver节点中,BlockManager存在于Driver节点和每个Executor节点。每个Executor中有且仅有一个BlockManager。

Spark将存储的数据进行抽象,每个存储的数据都称为一个Block,每个Block都对应着唯一的id,称为BlockId。在BlockManager中,对数据进行读写都是根据BlockId进行的。如果某个BlockManager中存储了一份数据,BlockManager会将该数据的BlockId和数据的存储状态(BlockStatus)发送至BlockManagerMaster中,从而BlockManagerMaster中即可知道每个BlockId对应的数据都存放在哪些节点中。此外BlockManagerMaster还记录了同一个BlockId都在哪些节点上进行了存储。其中存储的位置信息是使用BlockManagerId表示的,因为根据BlockManagerId即可找到相应的BlockManager。

根据存储的数据分类的不同,使用不同类型的BlockId进行表示:

  1. RDDBlockId:存储RDD某个分区数据,根据RDD的id和分区来确定唯一值。
  2. ShuffleBlockId:存储Shuffle过程Map端生成的数据,使用ShuffleId、Map端分区、Reduce端分区确定唯一值。
  3. BroadcastBlockId:存储广播变量数据。
  4. TaskResultBlockId:存储Task结果。

存储级别

对于同一个Block而已,存到内存还是磁盘只能二居其一,对于RDD而言,由于存在多个分区,缓存时会产生多个Block,有可能有的在内存有的在磁盘。

  1. NONE
  2. DISK_ONLY
  3. MEMORY_ONLY
  4. MEMORY_ONLY_2
  5. MEMORY_ONLY_SER
  6. MEMORY_AND_DISK
  7. MEMORY_AND_DISK_SER
  8. OFF_HEAP

RDD的持久化机制

弹性分布式数据集(RDD)作为 Spark 最根本的数据抽象,是只读的分区记录(Partition)的集合,只能基于在稳定物理存储中的数据集上创建,或者在其他已有的 RDD 上执行转换(Transformation)操作产生一个新的 RDD。转换后的 RDD 与原始的 RDD 之间产生的依赖关系,构成了血统(Lineage)。凭借血统,Spark 保证了每一个 RDD 都可以被重新恢复。但 RDD 的所有转换都是惰性的,即只有当一个返回结果给 Driver 的行动(Action)发生时,Spark 才会创建任务读取 RDD,然后真正触发转换的执行。

Task 在启动之初读取一个分区时,会先判断这个分区是否已经被持久化,如果没有则需要检查 Checkpoint 或按照血统重新计算。所以如果一个 RDD 上要执行多次行动,可以在第一次行动中使用 persist 或 cache 方法,在内存或磁盘中持久化或缓存这个 RDD,从而在后面的行动时提升计算速度。事实上,cache 方法是使用默认的 MEMORY_ONLY 的存储级别将 RDD 持久化到内存,故缓存是一种特殊的持久化。 堆内和堆外存储内存的设计,便可以对缓存 RDD 时使用的内存做统一的规划和管理 (存储内存的其他应用场景,如缓存 broadcast 数据,暂时不在此讨论范围之内)。

RDD 的持久化由 Spark 的 Storage 模块负责,实现了 RDD 与物理存储的解耦合。Storage 模块负责管理 Spark 在计算过程中产生的数据,将那些在内存或磁盘、在本地或远程存取数据的功能封装了起来。在具体实现时 Driver 端和 Executor 端的 Storage 模块构成了主从式的架构,即 Driver 端的 BlockManager 为 Master,Executor 端的 BlockManager 为 Slave。Storage 模块在逻辑上以 Block 为基本存储单位,RDD 的每个 Partition 经过处理后唯一对应一个 Block(BlockId 的格式为 rdd_RDD-ID_PARTITION-ID )。Master 负责整个 Spark 应用程序的 Block 的元数据信息的管理和维护,而 Slave 需要将 Block 的更新等状态上报到 Master,同时接收 Master 的命令,例如新增或删除一个 RDD。

Storage 模块示意图:

在对 RDD 持久化时,Spark 规定了 MEMORY_ONLYMEMORY_AND_DISK 等 7 种不同的存储级别 ,而存储级别是以下 5 个变量的组合:

class StorageLevel private(
private var _useDisk: Boolean, //磁盘
private var _useMemory: Boolean, //这里其实是指堆内内存
private var _useOffHeap: Boolean, //堆外内存
private var _deserialized: Boolean, //是否为非序列化
private var _replication: Int = 1 //副本个数
)

通过对数据结构的分析,可以看出存储级别从三个维度定义了 RDD 的 Partition(同时也就是 Block)的存储方式:

  • 存储位置:磁盘/堆内内存/堆外内存。如 MEMORY_AND_DISK 是同时在磁盘和堆内内存上存储,实现了冗余备份。OFF_HEAP 则是只在堆外内存存储,目前选择堆外内存时不能同时存储到其他位置。
  • 存储形式:Block 缓存到存储内存后,是否为非序列化的形式。如 MEMORY_ONLY 是非序列化方式存储,OFF_HEAP 是序列化方式存储。
  • 副本数量:大于 1 时需要远程冗余备份到其他节点。如 DISK_ONLY_2 需要远程备份 1 个副本。

RDD缓存的过程

RDD 在缓存到存储内存之前,Partition 中的数据一般以迭代器(Iterator)的数据结构来访问,这是 Scala 语言中一种遍历数据集合的方法。通过 Iterator 可以获取分区中每一条序列化或者非序列化的数据项(Record),这些 Record 的对象实例在逻辑上占用了 JVM 堆内内存的 other 部分的空间,同一 Partition 的不同 Record 的空间并不连续。

RDD 在缓存到存储内存之后,Partition 被转换成 Block,Record 在堆内或堆外存储内存中占用一块连续的空间。将Partition由不连续的存储空间转换为连续存储空间的过程,Spark称之为"展开"(Unroll)。Block 有序列化和非序列化两种存储格式,具体以哪种方式取决于该 RDD 的存储级别。非序列化的 Block 以一种 DeserializedMemoryEntry 的数据结构定义,用一个数组存储所有的对象实例,序列化的 Block 则以 SerializedMemoryEntry的数据结构定义,用字节缓冲区(ByteBuffer)来存储二进制数据。每个 Executor 的 Storage 模块用一个链式 Map 结构(LinkedHashMap)来管理堆内和堆外存储内存中所有的 Block 对象的实例,对这个 LinkedHashMap 新增和删除间接记录了内存的申请和释放。

因为不能保证存储空间可以一次容纳 Iterator 中的所有数据,当前的计算任务在 Unroll 时要向 MemoryManager 申请足够的 Unroll 空间来临时占位,空间不足则 Unroll 失败,空间足够时可以继续进行。对于序列化的 Partition,其所需的 Unroll 空间可以直接累加计算,一次申请。而非序列化的 Partition 则要在遍历 Record 的过程中依次申请,即每读取一条 Record,采样估算其所需的 Unroll 空间并进行申请,空间不足时可以中断,释放已占用的 Unroll 空间。如果最终 Unroll 成功,当前 Partition 所占用的 Unroll 空间被转换为正常的缓存 RDD 的存储空间,如下图所示。

Spark Unroll 示意图

在上篇的静态内存管理小节可以看到,在静态内存管理时,Spark 在存储内存中专门划分了一块 Unroll 空间,其大小是固定的,统一内存管理时则没有对 Unroll 空间进行特别区分,当存储空间不足时会根据动态占用机制进行处理。

Block淘汰和落盘

由于同一个 Executor 的所有的计算任务共享有限的存储内存空间,当有新的 Block 需要缓存但是剩余空间不足且无法动态占用时,就要对 LinkedHashMap 中的旧 Block 进行淘汰(Eviction),而被淘汰的 Block 如果其存储级别中同时包含存储到磁盘的要求,则要对其进行落盘(Drop),否则直接删除该 Block。

存储内存的淘汰规则为

  • 被淘汰的旧 Block 要与新 Block 的 MemoryMode 相同,即同属于堆外或堆内内存
  • 新旧 Block 不能属于同一个 RDD,避免循环淘汰
  • 旧 Block 所属 RDD 不能处于被读状态,避免引发一致性问题
  • 遍历 LinkedHashMap 中 Block,按照最近最少使用(LRU)的顺序淘汰,直到满足新 Block 所需的空间。其中 LRU 是 LinkedHashMap 的特性。
  • 落盘的流程则比较简单,如果其存储级别符合_useDisk 为 true 的条件,再根据其_deserialized 判断是否是非序列化的形式,若是则对其进行序列化,最后将数据存储到磁盘,在 Storage 模块中更新其信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1316764.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

BKP 备份寄存器 RTC 实时时钟-stm32入门

这一章节我们要讲的主要内容是 RTC 实时时钟,对应手册,是第 16 章的位置。 实时时钟这个东西,本质上是一个定时器,但是这个定时器,是专门用来产生年月日时分秒,这种日期和时间信息的。所以学会了 STM32 的…

Java系列-ConcurrentHashMap-addCount

1.addCount public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>implements ConcurrentMap<K,V>, Serializable {private final void addCount(long x, int check) {CounterCell[] as; long b, s;//1.counterCells不为null//2.或者 x加到baseCou…

挑战52天学小猪佩奇笔记--day24

52天学完小猪佩奇--day24 ​【本文说明】 本文内容来源于对B站UP 脑洞部长 的系列视频 挑战52天背完小猪佩奇----day24 的视频内容总结&#xff0c;方便复习。强烈建议大家去关注一波UP&#xff0c;配合UP视频学习。 注&#xff1a;这集开始变成一段一段的猜台词&#xff0c;加…

网站提示“不安全”

当你在浏览网站时&#xff0c;有时可能会遇到浏览器提示网站不安全的情况。这通常是由于网站缺乏SSL证书所致。那么&#xff0c;从SSL证书的角度出发&#xff0c;我们应该如何解决这个问题呢&#xff1f; 首先&#xff0c;让我们简单了解一下SSL证书。SSL证书是一种用于保护网站…

pybind11:对比C++和Python解线性方程组的速度

前言 上篇博客介绍了如何在用pybind11实现ndarray和C数组的转换自由&#xff0c;pybind11&#xff1a;实现ndarray转C原生数组&#xff08;没看过的朋友可以去看一看&#xff09;下面我们以一个实际的算法例子演示一下如何使用这个技术&#xff0c;方便的实现 Python 调用 C 写…

Java架构师系统架构高可用维度分析

目录 1 导语2 可用性介绍3 本地高可用-集群、分布式4 本地高可用-数据逻辑保护5 异地容灾-双活、两地三中心6 异地容灾-DRP规划&BCP业务连续性7 多活和妥协方案8 高可用流程9 总结想学习架构师构建流程请跳转:Java架构师系统架构设计 1 导语 Java架构师在进行系统架构设…

蓝桥杯专题-真题版含答案-【排序法 - 改良的选择排序】【插补搜寻法】【稀疏矩阵】【欧拉与鸡蛋】

Unity3D特效百例案例项目实战源码Android-Unity实战问题汇总游戏脚本-辅助自动化Android控件全解手册再战Android系列Scratch编程案例软考全系列Unity3D学习专栏蓝桥系列ChatGPT和AIGC &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分…

【golang/g3n】3D游戏引擎G3N的windows安装与测试

目录 说在前面安装测试 说在前面 操作系统&#xff1a;win 11go version&#xff1a;go1.21.5 windows/amd64g3n版本&#xff1a;github.com/g3n/engine v0.2.0其他&#xff1a;找了下golang 3d相关的库&#xff0c;目前好像就这个比较活跃 安装 按照官方教程所说&#xff0c;…

ES6 面试题 | 13.精选 ES6 面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

IDEA中alt enter不显示创建实现类快捷键

alt enter不显示创建实现类快捷键是因为idea中的设置没打开&#xff0c;按照一下设置打开就可以了。 点击setting-->>editor-->>intentions-->>java下的declaration 如下图所示&#xff1a;

PXI/PCIe/VPX机箱 ARM|x86 + FPGA测试测量板卡解决方案

PXI便携式测控系统是一种基于PXI总线的便携式测试测控系统&#xff0c;它填补了现有台式及机架式仪器在外场测控和便携测控应用上的空白&#xff0c;在军工国防、航空航天、兵器电子、船舶舰载等各个领域的外场测控场合和科学试验研究场合都有广泛的应用。由于PXI便携式测控系统…

HiveSql语法优化一 :分组聚合优化

Hive中未经优化的分组聚合&#xff0c;是通过一个MapReduce Job实现的。Map端负责读取数据&#xff0c;并按照分组字段分区&#xff0c;通过Shuffle&#xff0c;将数据发往Reduce端&#xff0c;各组数据在Reduce端完成最终的聚合运算。 Hive对分组聚合的优化主要围绕着减少Shuf…

Linux 基本语句_15_Tcp并发服务器

原理&#xff1a; 利用父子进程。父进程接收客户端的连接请求&#xff0c;子进程处理客户端的数据处理操作&#xff0c;两者各施其职。最终实现能够多个客户端连接一个服务端的操作。 代码&#xff1a; 服务端代码&#xff1a; #include <stdio.h> #include <sys/…

时序预测 | Python实现LSTM-Attention-XGBoost组合模型电力需求预测

时序预测 | Python实现LSTM-Attention-XGBoost组合模型电力需求预测 目录 时序预测 | Python实现LSTM-Attention-XGBoost组合模型电力需求预测预测效果基本描述程序设计参考资料预测效果 基本描述 该数据集因其每小时的用电量数据以及 TSO 对消耗和定价的相应预测而值得注意,从…

Eslint 要被 Oxlint替换了吗

什么是 Oxlint 由于最近的rust在前端领域的崛起,基于rust的前端生态链遭到rust底层重构,最近又爆出OxLint,是一款基于Rust的linter工具。Oxlint在国外前端圈引起热烈讨论,很多大佬给出了高度评价。 事实上,Oxlint 是 Oxc 项目旗下的一款产品,专为 JavaScript 和 TypeSc…

SLAM算法与工程实践——SLAM基本库的安装与使用(5):Ceres优化库

SLAM算法与工程实践系列文章 下面是SLAM算法与工程实践系列文章的总链接&#xff0c;本人发表这个系列的文章链接均收录于此 SLAM算法与工程实践系列文章链接 下面是专栏地址&#xff1a; SLAM算法与工程实践系列专栏 文章目录 SLAM算法与工程实践系列文章SLAM算法与工程实践…

【️接口和抽象类的区别,如何选择?】

✅接口和抽象类的区别&#xff0c;如何选择&#xff1f; ✅ 接口和抽象类的区别✅方法定义✅修饰符✅构造器✅继承和实现✅单继承 、 多实现✅职责不同 ✅什么是模板方法模式&#xff0c;有哪些应用呢&#xff1f;✅典型理解✅示例&#x1f4a1;思考 ✅你在工作中是如何使用设计…

Swin-Transformer 在图像识别中的应用

1. 卷积神经网络简单介绍 图像识别任务主要利用神经网络对图像进行特征提取&#xff0c;最后通过全连接层将特征和分类个数进行映射。传统的网络是利用线性网络对图像进行分类&#xff0c;然而图像信息是二维的&#xff0c;一般来说&#xff0c;图像像素点和周围邻域像素点相关…

【MISRA C 2012】Rule 5.4 宏标识符应该是不同的

1. 规则1.1 原文1.2 分类 2. 关键描述3. Example4. 代码实例 1. 规则 1.1 原文 1.2 分类 规则5.4&#xff1a;宏标识符应该是不同的 Required要求类规范。 2. 关键描述 该规则要求&#xff0c;当定义宏时&#xff0c;其名称与: •当前定义的其他宏的名称;和 •参数的名称。…

网线市场现状与发展趋势预测

随着物联网、5G、云计算等技术的迅速发展&#xff0c;全球对于高速、稳定的网络需求急剧增长&#xff0c;这进一步推动了网线市场的发展。各种网络应用场景&#xff0c;从家庭到企业、数据中心到智能城市&#xff0c;都需要大量的高质量网线来支持数据传输和通信需求。本文将对…