Android 移动端编译 cityhash动态库

news2024/11/16 4:43:38

最近做项目, 硬件端 需要 用 cityhash 编译一个 动态库 提供给移动端使用,l

记录一下 编译过程
city .cpp

//
// Created by Administrator on 2023/12/12.
//
// Copyright (c) 2011 Google, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
// CityHash, by Geoff Pike and Jyrki Alakuijala
//
// This file provides CityHash64() and related functions.
//
// It's probably possible to create even faster hash functions by
// writing a program that systematically explores some of the space of
// possible hash functions, by using SIMD instructions, or by
// compromising on hash quality.

#include "city.h"

#include <algorithm>
/*#include <string.h>*/
#include "string.h"

using namespace std;

static uint64 UNALIGNED_LOAD64(const char *p) {
    uint64 result;
    memcpy(&result, p, sizeof(result));
    return result;
}

static uint32 UNALIGNED_LOAD32(const char *p) {
    uint32 result;
    memcpy(&result, p, sizeof(result));
    return result;
}

#ifndef __BIG_ENDIAN__

#define uint32_in_expected_order(x) (x)
#define uint64_in_expected_order(x) (x)

#else

#ifdef _MSC_VER
#include <stdlib.h>
#define bswap_32(x) _byteswap_ulong(x)
#define bswap_64(x) _byteswap_uint64(x)

#elif defined(__APPLE__)
// Mac OS X / Darwin features
#include <libkern/OSByteOrder.h>
#define bswap_32(x) OSSwapInt32(x)
#define bswap_64(x) OSSwapInt64(x)

#else
#include <byteswap.h>
#endif

#define uint32_in_expected_order(x) (bswap_32(x))
#define uint64_in_expected_order(x) (bswap_64(x))



#endif  // __BIG_ENDIAN__

#if !defined(LIKELY)
#if defined(__GNUC__) || defined(__INTEL_COMPILER)
#define LIKELY(x) (__builtin_expect(!!(x), 1))
#else
#define LIKELY(x) (x)
#endif
#endif

static uint64 Fetch64(const char *p) {
    return uint64_in_expected_order(UNALIGNED_LOAD64(p));
}

static uint32 Fetch32(const char *p) {
    return uint32_in_expected_order(UNALIGNED_LOAD32(p));
}

// Some primes between 2^63 and 2^64 for various uses.
static const uint64 k0 = 0xc3a5c85c97cb3127ULL;
static const uint64 k1 = 0xb492b66fbe98f273ULL;
static const uint64 k2 = 0x9ae16a3b2f90404fULL;
static const uint64 k3 = 0xc949d7c7509e6557ULL;

// Bitwise right rotate.  Normally this will compile to a single
// instruction, especially if the shift is a manifest constant.
static uint64 Rotate(uint64 val, int shift) {
    // Avoid shifting by 64: doing so yields an undefined result.
    return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
}

// Equivalent to Rotate(), but requires the second arg to be non-zero.
// On x86-64, and probably others, it's possible for this to compile
// to a single instruction if both args are already in registers.
static uint64 RotateByAtLeast1(uint64 val, int shift) {
    return (val >> shift) | (val << (64 - shift));
}

static uint64 ShiftMix(uint64 val) {
    return val ^ (val >> 47);
}

static uint64 HashLen16(uint64 u, uint64 v) {
    return Hash128to64(uint128(u, v));
}

static uint64 HashLen0to16(const char *s, size_t len) {
    if (len > 8) {
        uint64 a = Fetch64(s);
        uint64 b = Fetch64(s + len - 8);
        return HashLen16(a, RotateByAtLeast1(b + len, len)) ^ b;
    }
    if (len >= 4) {
        uint64 a = Fetch32(s);
        return HashLen16(len + (a << 3), Fetch32(s + len - 4));
    }
    if (len > 0) {
        uint8 a = s[0];
        uint8 b = s[len >> 1];
        uint8 c = s[len - 1];
        uint32 y = static_cast<uint32>(a) + (static_cast<uint32>(b) << 8);
        uint32 z = len + (static_cast<uint32>(c) << 2);
        return ShiftMix(y * k2 ^ z * k3) * k2;
    }
    return k2;
}

// This probably works well for 16-byte strings as well, but it may be overkill
// in that case.
static uint64 HashLen17to32(const char *s, size_t len) {
    uint64 a = Fetch64(s) * k1;
    uint64 b = Fetch64(s + 8);
    uint64 c = Fetch64(s + len - 8) * k2;
    uint64 d = Fetch64(s + len - 16) * k0;
    return HashLen16(Rotate(a - b, 43) + Rotate(c, 30) + d,
                     a + Rotate(b ^ k3, 20) - c + len);
}

// Return a 16-byte hash for 48 bytes.  Quick and dirty.
// Callers do best to use "random-looking" values for a and b.
static pair<uint64, uint64> WeakHashLen32WithSeeds(
        uint64 w, uint64 x, uint64 y, uint64 z, uint64 a, uint64 b) {
    a += w;
    b = Rotate(b + a + z, 21);
    uint64 c = a;
    a += x;
    a += y;
    b += Rotate(a, 44);
    return make_pair(a + z, b + c);
}

// Return a 16-byte hash for s[0] ... s[31], a, and b.  Quick and dirty.
static pair<uint64, uint64> WeakHashLen32WithSeeds(
        const char* s, uint64 a, uint64 b) {
    return WeakHashLen32WithSeeds(Fetch64(s),
                                  Fetch64(s + 8),
                                  Fetch64(s + 16),
                                  Fetch64(s + 24),
                                  a,
                                  b);
}

// Return an 8-byte hash for 33 to 64 bytes.
static uint64 HashLen33to64(const char *s, size_t len) {
    uint64 z = Fetch64(s + 24);
    uint64 a = Fetch64(s) + (len + Fetch64(s + len - 16)) * k0;
    uint64 b = Rotate(a + z, 52);
    uint64 c = Rotate(a, 37);
    a += Fetch64(s + 8);
    c += Rotate(a, 7);
    a += Fetch64(s + 16);
    uint64 vf = a + z;
    uint64 vs = b + Rotate(a, 31) + c;
    a = Fetch64(s + 16) + Fetch64(s + len - 32);
    z = Fetch64(s + len - 8);
    b = Rotate(a + z, 52);
    c = Rotate(a, 37);
    a += Fetch64(s + len - 24);
    c += Rotate(a, 7);
    a += Fetch64(s + len - 16);
    uint64 wf = a + z;
    uint64 ws = b + Rotate(a, 31) + c;
    uint64 r = ShiftMix((vf + ws) * k2 + (wf + vs) * k0);
    return ShiftMix(r * k0 + vs) * k2;
}

uint64 CityHash64(const char *s, size_t len) {
    if (len <= 32) {
        if (len <= 16) {
            return HashLen0to16(s, len);
        } else {
            return HashLen17to32(s, len);
        }
    } else if (len <= 64) {
        return HashLen33to64(s, len);
    }

    // For strings over 64 bytes we hash the end first, and then as we
    // loop we keep 56 bytes of state: v, w, x, y, and z.
    uint64 x = Fetch64(s + len - 40);
    uint64 y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
    uint64 z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
    pair<uint64, uint64> v = WeakHashLen32WithSeeds(s + len - 64, len, z);
    pair<uint64, uint64> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
    x = x * k1 + Fetch64(s);

    // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
    len = (len - 1) & ~static_cast<size_t>(63);
    do {
        x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
        y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
        x ^= w.second;
        y += v.first + Fetch64(s + 40);
        z = Rotate(z + w.first, 33) * k1;
        v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
        w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
        std::swap(z, x);
        s += 64;
        len -= 64;
    } while (len != 0);
    return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z,
                     HashLen16(v.second, w.second) + x);
}

uint64 CityHash64WithSeed(const char *s, size_t len, uint64 seed) {
    return CityHash64WithSeeds(s, len, k2, seed);
}

uint64 CityHash64WithSeeds(const char *s, size_t len,
                           uint64 seed0, uint64 seed1) {
    return HashLen16(CityHash64(s, len) - seed0, seed1);
}


// A subroutine for CityHash128().  Returns a decent 128-bit hash for strings
// of any length representable in signed long.  Based on City and Murmur.
static uint128 CityMurmur(const char *s, size_t len, uint128 seed) {
    uint64 a = Uint128Low64(seed);
    uint64 b = Uint128High64(seed);
    uint64 c = 0;
    uint64 d = 0;
    signed long l = len - 16;
    if (l <= 0) {  // len <= 16
        a = ShiftMix(a * k1) * k1;
        c = b * k1 + HashLen0to16(s, len);
        d = ShiftMix(a + (len >= 8 ? Fetch64(s) : c));
    } else {  // len > 16
        c = HashLen16(Fetch64(s + len - 8) + k1, a);
        d = HashLen16(b + len, c + Fetch64(s + len - 16));
        a += d;
        do {
            a ^= ShiftMix(Fetch64(s) * k1) * k1;
            a *= k1;
            b ^= a;
            c ^= ShiftMix(Fetch64(s + 8) * k1) * k1;
            c *= k1;
            d ^= c;
            s += 16;
            l -= 16;
        } while (l > 0);
    }
    a = HashLen16(a, c);
    b = HashLen16(d, b);
    return uint128(a ^ b, HashLen16(b, a));
}

uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed) {
    if (len < 128) {
        return CityMurmur(s, len, seed);
    }

    // We expect len >= 128 to be the common case.  Keep 56 bytes of state:
    // v, w, x, y, and z.
    pair<uint64, uint64> v, w;
    uint64 x = Uint128Low64(seed);
    uint64 y = Uint128High64(seed);
    uint64 z = len * k1;
    v.first = Rotate(y ^ k1, 49) * k1 + Fetch64(s);
    v.second = Rotate(v.first, 42) * k1 + Fetch64(s + 8);
    w.first = Rotate(y + z, 35) * k1 + x;
    w.second = Rotate(x + Fetch64(s + 88), 53) * k1;

    // This is the same inner loop as CityHash64(), manually unrolled.
    do {
        x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
        y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
        x ^= w.second;
        y += v.first + Fetch64(s + 40);
        z = Rotate(z + w.first, 33) * k1;
        v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
        w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
        std::swap(z, x);
        s += 64;
        x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
        y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
        x ^= w.second;
        y += v.first + Fetch64(s + 40);
        z = Rotate(z + w.first, 33) * k1;
        v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
        w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
        std::swap(z, x);
        s += 64;
        len -= 128;
    } while (LIKELY(len >= 128));
    x += Rotate(v.first + z, 49) * k0;
    z += Rotate(w.first, 37) * k0;
    // If 0 < len < 128, hash up to 4 chunks of 32 bytes each from the end of s.
    for (size_t tail_done = 0; tail_done < len; ) {
        tail_done += 32;
        y = Rotate(x + y, 42) * k0 + v.second;
        w.first += Fetch64(s + len - tail_done + 16);
        x = x * k0 + w.first;
        z += w.second + Fetch64(s + len - tail_done);
        w.second += v.first;
        v = WeakHashLen32WithSeeds(s + len - tail_done, v.first + z, v.second);
    }
    // At this point our 56 bytes of state should contain more than
    // enough information for a strong 128-bit hash.  We use two
    // different 56-byte-to-8-byte hashes to get a 16-byte final result.
    x = HashLen16(x, v.first);
    y = HashLen16(y + z, w.first);
    return uint128(HashLen16(x + v.second, w.second) + y,
                   HashLen16(x + w.second, y + v.second));
}

uint128 CityHash128(const char *s, size_t len) {
    if (len >= 16) {
        return CityHash128WithSeed(s + 16,
                                   len - 16,
                                   uint128(Fetch64(s) ^ k3,
                                           Fetch64(s + 8)));
    } else if (len >= 8) {
        return CityHash128WithSeed(NULL,
                                   0,
                                   uint128(Fetch64(s) ^ (len * k0),
                                           Fetch64(s + len - 8) ^ k1));
    } else {
        return CityHash128WithSeed(s, len, uint128(k0, k1));
    }
}




#if defined(__SSE4_2__) && defined(__x86_64__)
#include <nmmintrin.h>

// Requires len >= 240.
static void CityHashCrc256Long(const char *s, size_t len,
                               uint32 seed, uint64 *result) {
  uint64 a = Fetch64(s + 56) + k0;
  uint64 b = Fetch64(s + 96) + k0;
  uint64 c = result[0] = HashLen16(b, len);
  uint64 d = result[1] = Fetch64(s + 120) * k0 + len;
  uint64 e = Fetch64(s + 184) + seed;
  uint64 f = seed;
  uint64 g = 0;
  uint64 h = 0;
  uint64 i = 0;
  uint64 j = 0;
  uint64 t = c + d;

  // 240 bytes of input per iter.
  size_t iters = len / 240;
  len -= iters * 240;
  do {
#define CHUNK(multiplier, z)                                    \
    {                                                           \
      uint64 old_a = a;                                         \
      a = Rotate(b, 41 ^ z) * multiplier + Fetch64(s);          \
      b = Rotate(c, 27 ^ z) * multiplier + Fetch64(s + 8);      \
      c = Rotate(d, 41 ^ z) * multiplier + Fetch64(s + 16);     \
      d = Rotate(e, 33 ^ z) * multiplier + Fetch64(s + 24);     \
      e = Rotate(t, 25 ^ z) * multiplier + Fetch64(s + 32);     \
      t = old_a;                                                \
    }                                                           \
    f = _mm_crc32_u64(f, a);                                    \
    g = _mm_crc32_u64(g, b);                                    \
    h = _mm_crc32_u64(h, c);                                    \
    i = _mm_crc32_u64(i, d);                                    \
    j = _mm_crc32_u64(j, e);                                    \
    s += 40

    CHUNK(1, 1); CHUNK(k0, 0);
    CHUNK(1, 1); CHUNK(k0, 0);
    CHUNK(1, 1); CHUNK(k0, 0);
  } while (--iters > 0);

  while (len >= 40) {
    CHUNK(k0, 0);
    len -= 40;
  }
  if (len > 0) {
    s = s + len - 40;
    CHUNK(k0, 0);
  }
  j += i << 32;
  a = HashLen16(a, j);
  h += g << 32;
  b += h;
  c = HashLen16(c, f) + i;
  d = HashLen16(d, e + result[0]);
  j += e;
  i += HashLen16(h, t);
  e = HashLen16(a, d) + j;
  f = HashLen16(b, c) + a;
  g = HashLen16(j, i) + c;
  result[0] = e + f + g + h;
  a = ShiftMix((a + g) * k0) * k0 + b;
  result[1] += a + result[0];
  a = ShiftMix(a * k0) * k0 + c;
  result[2] = a + result[1];
  a = ShiftMix((a + e) * k0) * k0;
  result[3] = a + result[2];
}

// Requires len < 240.
static void CityHashCrc256Short(const char *s, size_t len, uint64 *result) {
  char buf[240];
  memcpy(buf, s, len);
  memset(buf + len, 0, 240 - len);
  CityHashCrc256Long(buf, 240, ~static_cast<uint32>(len), result);
}

void CityHashCrc256(const char *s, size_t len, uint64 *result) {
  if (LIKELY(len >= 240)) {
    CityHashCrc256Long(s, len, 0, result);
  } else {
    CityHashCrc256Short(s, len, result);
  }
}

uint128 CityHashCrc128WithSeed(const char *s, size_t len, uint128 seed) {
  if (len <= 900) {
    return CityHash128WithSeed(s, len, seed);
  } else {
    uint64 result[4];
    CityHashCrc256(s, len, result);
    uint64 u = Uint128High64(seed) + result[0];
    uint64 v = Uint128Low64(seed) + result[1];
    return uint128(HashLen16(u, v + result[2]),
                   HashLen16(Rotate(v, 32), u * k0 + result[3]));
  }
}


}

#endif

city.h 头文件

// Created by Administrator on 2023/12/12.
//

// Copyright (c) 2011 Google, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
// CityHash, by Geoff Pike and Jyrki Alakuijala
//
// This file provides a few functions for hashing strings. On x86-64
// hardware in 2011, CityHash64() is faster than other high-quality
// hash functions, such as Murmur.  This is largely due to higher
// instruction-level parallelism.  CityHash64() and CityHash128() also perform
// well on hash-quality tests.
//
// CityHash128() is optimized for relatively long strings and returns
// a 128-bit hash.  For strings more than about 2000 bytes it can be
// faster than CityHash64().
//
// Functions in the CityHash family are not suitable for cryptography.
//
// WARNING: This code has not been tested on big-endian platforms!
// It is known to work well on little-endian platforms that have a small penalty
// for unaligned reads, such as current Intel and AMD moderate-to-high-end CPUs.
//
// By the way, for some hash functions, given strings a and b, the hash
// of a+b is easily derived from the hashes of a and b.  This property
// doesn't hold for any hash functions in this file.

#ifndef CITY_HASH_H_
#define CITY_HASH_H_

#include <stdlib.h>  // for size_t.
#include <utility>


// Microsoft Visual Studio may not have stdint.h.
#if defined(_MSC_VER) && (_MSC_VER < 1600)
typedef unsigned char uint8_t;
typedef unsigned int uint32_t;
typedef unsigned __int64 uint64_t;
#else  // defined(_MSC_VER)
#include <stdint.h>
#endif // !defined(_MSC_VER)

typedef uint8_t uint8;
typedef uint32_t uint32;
typedef uint64_t uint64;
typedef std::pair<uint64, uint64> uint128;

inline uint64 Uint128Low64(const uint128& x) { return x.first; }
inline uint64 Uint128High64(const uint128& x) { return x.second; }

// Hash function for a byte array.
uint64 CityHash64(const char *buf, size_t len);

// Hash function for a byte array.  For convenience, a 64-bit seed is also
// hashed into the result.
uint64 CityHash64WithSeed(const char *buf, size_t len, uint64 seed);

// Hash function for a byte array.  For convenience, two seeds are also
// hashed into the result.
uint64 CityHash64WithSeeds(const char *buf, size_t len,
                           uint64 seed0, uint64 seed1);

// Hash function for a byte array.
uint128 CityHash128(const char *s, size_t len);

// Hash function for a byte array.  For convenience, a 128-bit seed is also
// hashed into the result.
uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed);

// Hash 128 input bits down to 64 bits of output.
// This is intended to be a reasonably good hash function.
inline uint64 Hash128to64(const uint128& x) {
    // Murmur-inspired hashing.
    const uint64 kMul = 0x9ddfea08eb382d69ULL;
    uint64 a = (Uint128Low64(x) ^ Uint128High64(x)) * kMul;
    a ^= (a >> 47);
    uint64 b = (Uint128High64(x) ^ a) * kMul;
    b ^= (b >> 47);
    b *= kMul;
    return b;
}

// Conditionally include declarations for versions of City that require SSE4.2
// instructions to be available.
#if defined(__SSE4_2__) && defined(__x86_64__)

// Hash function for a byte array.
uint128 CityHashCrc128(const char *s, size_t len);

// Hash function for a byte array.  For convenience, a 128-bit seed is also
// hashed into the result.
uint128 CityHashCrc128WithSeed(const char *s, size_t len, uint128 seed);

// Hash function for a byte array.  Sets result[0] ... result[3].
void CityHashCrc256(const char *s, size_t len, uint64 *result);

#endif  // __SSE4_2__

#endif  // CITY_HASH_H_

在这里插入代码片

我在vs 编译一下

在这里插入图片描述
在这里插入图片描述编译通过

直接移植到Android 上

在这里插入图片描述调用



   byte[] byteArray ={(byte) 0x8E, (byte) 0xE8,(byte)0x6D, (byte) 0xD6};
                    String result1 = googleCity.getCityCode(byteArray);


                    tv.setText(result1+"");

在这里插入代码片
```搞定 

需要代码的小伙伴 点击这里:




本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1315292.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Win11黑屏死机怎么办?

Win11黑屏死机是一个令人烦恼的问题&#xff0c;特别是对于那些计算机知识并不充裕的人来说。那么Win11死机黑屏怎么办呢&#xff1f;下面我们就来了解一下。 方案一&#xff1a;卸下外部硬盘驱动器 有些时候&#xff0c;电脑的外部硬件可能会导致电脑黑屏问题。在这种情况下&…

【️Java和C++主要的区别有哪些?各有哪些优缺点?】

✅Java和C主要的区别有哪些&#xff1f;各有哪些优缺点&#xff1f; ✅Java和C分别代表两种类型的语言✅ C是编译型语言✅ Java是解释型语言✅ 两者更多的主要区别如下&#xff1a; ✅知识拓展✅Java与C的参数方法有什么区别&#xff1f; ✅Java和C分别代表两种类型的语言 Java…

生成小程序URLlink链接遇到的坑

这里写自定义目录标题 前端生成小程序URL link背景用户打开小程序的常用方法短链接短链接优缺点优点缺点 生成短链接步骤 可能会遇到的问题&#xff1a;其他 注意&#x1f4e2; 前端生成小程序URL link ![h5打开小程序](https://img-blog.csdnimg.cn/direct/a4cfe3ef6d184c6d9…

打造微信私域有什么优势?

随着线上竞争愈发激烈&#xff0c;获客成本逐步攀升&#xff0c;越来越多的企业都开始打造属于自己的私域流量池。而作为目前全球拥有超过10亿活跃用户的平台&#xff0c;微信无疑是构建私域的理想选择。那么使用微信来打造私域流量有哪些优势呢? 打造微信私域的优势包括但不…

【Docker六】Docker-consul

目录 一、docker-consul概述 1、服务注册和发现&#xff1a; 1.1、服务注册和发现概念 1.2、服务注册和发现工作机制&#xff1a; 1.3、服务注册与发现的优点&#xff1a; 2、docker-consul概念 2.1、consul的主要特点&#xff1a; 二、consul架构部署&#xff1a; 1、…

VS Code连接远程Linux服务器调试MPI程序

1.在 VS Code 上安装扩展 C/C 2.通过 VS Code 连接远程 Linux 服务器 3.通过 VS Code 在远程 Linux 服务器上安装扩展 C/C 4.打开远程 Linux 服务器上的文件夹 【注】本文以 /root/ 为例。 5.创建项目文件夹&#xff0c;并在项目文件夹下创建MPI程序 6.点击左侧菜单栏的…

Docker构建镜像时空间不足:/var/lib/docker,no space left on device

背景 在一次更新业务服务功能后&#xff0c;重新在服务器上构建微服务镜像&#xff0c;在构建镜像时报错空间不足&#xff1a; /var/lib/docker, no space left on device 赶紧用 df -h 看了下磁盘使用情况&#xff0c;果然&#xff0c; devicemapper 已经满了。。由于需要紧急…

PyQt6 QToolBar工具栏控件

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计44条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…

数据库 02-03 补充 SQL的子查询(where,from),子查询作为集合来比较some,exists,all(某一个,存在,所有)

子查询&#xff1a; where字句的子查询&#xff1a; 通常用in关键字&#xff1a; 举个例子&#xff1a; in关键字&#xff1a; not in 关键字&#xff1a; in 也可以用于枚举集合&#xff1a; where中可以用子查询来作为集合来筛选元祖。 some&#xff0c;all的运算符号…

【JavaScript】闭包的理解

闭包是指在一个函数内部创建另一个函数&#xff0c;并且内部函数可以访问外部函数的变量、参数以及其他内部函数&#xff0c;即使外部函数已经执行完毕。这种机制使得内部函数保留了对外部作用域的引用&#xff0c;即使外部作用域已经不再活跃。 为什么闭包重要&#xff1f; 闭…

Unity | Shader基础知识(第六集:语法<如何加入外部颜色资源>)

目录 一、本节介绍 1 上集回顾 2 本节介绍 二、语法结构 1 复习 2 理论知识 3 Shader里声明的写法 4 Properties和SubShader毕竟不是一家人 三、 片元着色器中使用资源 四、代码实现 五、全部代码 六、下集介绍 相关阅读 Unity - Manual: Writing Surface Shaders…

ES-模糊查询

模糊查询 1 wildcard 准备数据 POST demolike/_bulk {"index": {"_id": "1"} } {"text": "草莓熊是个大坏蛋" } {"index": {"_id": "2"} } {"text": "wolf 也是一个坏蛋&q…

大数据组件:Hadoop

文章目录 1、Hadoop 是什么2、Hadoop 优势3、Hadoop 组成&#xff08;1&#xff09;HDFS&#xff08;2&#xff09;YARN&#xff08;3&#xff09;MapReduce 架构概述&#xff08;4&#xff09;HDFS、YARN、MapReduce 三者关系&#xff08;5&#xff09;大数据技术生态体系&…

AWTK 串口屏开发(2) - 数据绑定高级用法

AWTK 串口屏 智能家居示例 1. 功能 这个例子稍微复杂一点&#xff0c;界面这里直接使用了 立功科技 ZDP1440 HMI 显示驱动芯片 例子中的 UI 文件和资源&#xff0c;重点关注数据绑定。在这里例子中&#xff0c;模型&#xff08;也就是数据&#xff09;里包括一台空调和一台咖…

STM32与Freertos入门(六)队列

1、队列介绍 队列是FreeRTOS提供的一种重要的通信机制&#xff0c;用于在任务之间传递数据。 FreeRTOS队列是一种先进先出&#xff08;FIFO&#xff09;的数据结构&#xff0c;用于在任务之间传递消息或数据项。它允许一个任务将数据项发送到队列&#xff0c;而另一个任务则可…

Linux部署MySQL5.7和8.0版本 | CentOS和Ubuntu系统详细步骤安装

一、MySQL数据库管理系统安装部署【简单】 简介 MySQL数据库管理系统&#xff08;后续简称MySQL&#xff09;&#xff0c;是一款知名的数据库系统&#xff0c;其特点是&#xff1a;轻量、简单、功能丰富。 MySQL数据库可谓是软件行业的明星产品&#xff0c;无论是后端开发、…

Reinfocement Learning 学习笔记PartⅡ

文章目录 Reinfocement Learning六、随机近似与随机梯度下降&#xff08;Stochastic Approximation & Stochastic Gradient Descent&#xff09;6.1 Robbins-Monro Algorithm6.2 随机梯度下降 七、时序差分方法&#xff08;Temporal-Difference Learning&#xff09;7.1 TD…

[算法总结] 十大排序算法

[算法总结] 十大排序算法 简介&#xff1a; 本文首发于我的个人博客&#xff1a;尾尾部落排序算法是最经典的算法知识。因为其实现代码短&#xff0c;应该广&#xff0c;在面试中经常会问到排序算法及其相关的问题。一般在面试中最常考的是快速排序和归并排序等基本的排序算法…

想做游戏开发,我应该会点啥?

在知乎上&#xff0c;经常能看到类似“如何入门游戏开发”这样的问题&#xff0c;这篇文章&#xff0c;我试着概括性的对游戏开发所需要的技能做一个总结&#xff0c;希望大家对游戏开发能有一个基本的认识~ 游戏开发基础要求高么&#xff1f; 和其他程序猿一样&#xff0c;要…

[MySQL]数据库概述

目录 1.什么是数据库 2.数据库分类 2.1关系型数据库 2.2非关系型数据库 1.什么是数据库 我们知道&#xff0c;存储数据可以使用文件来存储。那么为什么我们还要大费周章的去设计和使用数据库呢&#xff1f; 因为文件保存数据有以下几个缺点&#xff1a; 1.文件的安全性不…