模型部署系列:10x速度提升,Yolov8检测模型稀疏化——CPU上超500FPS

news2024/11/16 7:47:20

YOLOv8由广受欢迎的YOLOv3和YOLOv5模型的作者 Ultralytics 开发,凭借其无锚设计将目标检测提升到了一个新的水平。YOLOv8 专为实际部署而设计,重点关注速度、延迟和经济性。

[1] 详细内容请参阅 MarkAI Blog
[2] 更多资料及工程项目请关注 MarkAI Github
[3] 通关感知算法面试请Star 2024年千道算法面试题综述

在本文中,您将了解 YOLO 的最新版本以及如何将其与 DeepSparse 一起部署以获得 CPU 上的最佳性能。我们通过在 AWS 上部署模型来说明这一点,在 YOLOv8s(小型版本)上实现 209 FPS,在 YOLOv8n(纳米版本)上实现 525 FPS,比 PyTorch 和 ONNX 运行时加速 10 倍!
在这里插入图片描述

有关 DeepSparse 如何通过稀疏性实现加速的详细指南,请查看
YOLOv5 with Neural Magic’s DeepSparse。

YOLOv8 用法

新的ultralytics包可以轻松地使用自定义数据训练 YOLO 模型并将其转换为 ONNX 格式以进行部署。

以下是 Python API 的示例:

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.yaml")  # build a new model from scratch
model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)

# Use the model
results = model.train(data="coco128.yaml", epochs=3)  # train the model
results = model.val()  # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
success = YOLO("yolov8n.pt").export(format="onnx")  # export a model to ONNX format

下面是一个通过 CLI 的示例:

yolo task=detect mode=predict model=yolov8n.pt 
source="https://ultralytics.com/images/bus.jpg"

使用 DeepSparse 部署 YOLOv8

对于现实应用程序中的生产部署,推理速度对于确定系统的总体成本和响应能力至关重要。DeepSparse 是一个推理运行时,专注于让 YOLOv8 等深度学习模型在 CPU 上快速运行。DeepSparse 通过推理优化的稀疏模型实现了最佳性能,它还可以有效地运行标准的现成模型。

让我们将标准 YOLOv8 模型导出到 ONNX 并在 CPU 上运行一些基准测试。

# Install packages for DeepSparse and YOLOv8
pip install deepsparse[yolov8] ultralytics

# Export YOLOv8n and YOLOv8s ONNX models
yolo task=detect mode=export model=yolov8n.pt format=onnx opset=13
yolo task=detect mode=export model=yolov8s.pt format=onnx opset=13

# Benchmark with DeepSparse!
deepsparse.benchmark yolov8n.onnx --scenario=sync --input_shapes="[1,3,640,640]"
> Throughput (items/sec): 198.3282
> Latency Mean (ms/batch): 5.0366

deepsparse.benchmark yolov8s.onnx --scenario=sync --input_shapes="[1,3,640,640]"
> Throughput (items/sec): 68.3909
> Latency Mean (ms/batch): 14.6101

DeepSparse 还提供了一些方便的实用程序,用于将模型集成到您的应用程序中。例如,您可以使用 YOLOv8 对图像或视频进行注释。带注释的文件保存在annotation-results文件夹中:

deepsparse.yolov8.annotate --source basilica.jpg --model_filepath "yolov8n.onnx # or "yolov8n_quant.onnx"

在这里插入图片描述

通过优化推理模型,可以进一步提升 DeepSparse 的性能。DeepSparse 的构建是为了利用通过权重修剪和量化进行优化的模型,这些技术可以在不降低准确性的情况下大幅缩减所需的计算量。通过我们的 One-Shot 优化方法(将在即将推出的 Sparsify 产品中提供),我们生成了 YOLOv8s 和 YOLOv8n ONNX 模型,这些模型已量化为 INT8,同时保持至少 99% 的原始 FP32 mAP@0.5 。这是仅使用 1024 个样本且没有反向传播即可实现的。您可以在此处下载 量化模型。

运行以下命令来测试性能:

deepsparse.benchmark yolov8n_quant.onnx --scenario=sync --input_shapes="[1,3,640,640]"
> Throughput (items/sec): 525.0226
> Latency Mean (ms/batch): 1.9047

deepsparse.benchmark yolov8s_quant.onnx --scenario=sync --input_shapes="[1,3,640,640]"
> Throughput (items/sec): 209.9472
> Latency Mean (ms/batch): 4.7631

DeepSparse在 FP32 下的速度快 4 倍,在 INT8 下的速度快 10 倍。

在这里插入图片描述

ModelSizemAPval (50-95)mAPval (50)PrecisionEngineSpeed CPU b1(ms)FPS CPU
YOLOv8n64037.253.1FP32PyTorch20.548.78
YOLOv8n64037.253.1FP32ONNXRuntime21.7446.00
YOLOv8n64037.253.1FP32DeepSparse5.74198.33
YOLOv8n INT864036.752.6INT8DeepSparse1.90525.02
YOLOv8s64044.662.0FP32PyTorch31.3031.95
YOLOv8s64044.662.0FP32ONNXRuntime32.4330.83
YOLOv8s64044.662.0FP32DeepSparse14.6668.23
YOLOv8s INT864044.261.6INT8DeepSparse4.76209.95

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1309968.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RISCV中的寄存器操作

控制状态寄存器指令 (csrrc、csrrs、csrrw、csrrci、csrrsi、csrrwi), 使我们可以轻松地访问一些程序性能计数器。对于这些 64 位计数器, 我们一次可以读取 32 位。这些计数器包括了系统时间, 时钟周期以及执行的指令数目。 CSRRW 先读取寄存器的值:tCS…

使用开源技术快速上手 Web 前端开发(内含PPT课件)

11月29日 OpenTiny 参与了华为云开源针对的高校学生在中国人民大学举办的 meetup 交流活动,本次活动演讲主要围绕数据库、Web3、AI大模型、微服务治理、前端等领域展开讨论。OpenTiny 主要为大家分享了 《使用开源技术快速上手Web前端开发》 ,与大家共同探讨前端开发…

AMEYA360 | 太阳诱电汽车电子解决方案

据AMEYA360了解,日前,太阳诱电汽车电子产品相关内容在电子发烧友网站以专题页形式更新。主要内容包含太阳诱电车规级电子元器件产品优势、汽车电子领域应用场景、产品阵容等。 太阳诱电车规级电子元器件以丰富多样的产品阵容助力汽车电子化和智能化。 太…

致远互联-OA wpsAssistServlet 任意文件读取漏洞复现

0x01 产品简介 致远互联-OA 是数字化构建企业数字化协同运营中台,面向企业各种业务场景提供一站式大数据分析解决方案的协同办公软件。 0x02 漏洞概述 致远互联-OA wpsAssistServlet 存在任意文件读取漏洞,攻击者可读取系统密码等敏感信息进一步控制系统。 0x03 复现环境…

第二证券:防御性板块逆势活跃 A股结构性机会轮动

昨日商场慎重张望心境升温,个股跌多涨少。防御性板块中的医药、燃气板块涨幅居前。医药板块中,拓新药业、森萱医药涨超19%,百利天恒、亨迪药业、新赣江等多股涨超10%。 据中国气候网消息,从12月12日夜间初步,新一轮寒…

自定义Axure元件库及原型图泳道图的绘制(详细不同类的案例)

目录 前言 一.自定义元件库 1.1 自定义元件库的作用 1.2 自定义元件的操作 二.流程图 2.1 流程图的作用 2.2 绘制流程图 2.3 简易流程图案例 三.泳道图 3.1 泳道图的作用 3.2 流程图和泳道图的区别 3.3 绘制泳道图 四.绘制前的准备 五.案例 4.1 门诊模块案例 4.2 …

Java面向对象(高级)-- 包装类(wrapper)的使用

文章目录 一、概念(1)为什么需要包装类(2) 有哪些包装类(3)总结 二、包装类(1)自定义包装类(2) 包装类与基本数据类型间的转换2.1 为什么需要转换2.2 装箱2.2…

wvp-GB28181-pro 2.0+ZLMediaKit 使用Dockerfile制作镜像以及部署【CentOS7】

说明 部署gb28181和zlm主要需要构建两个镜像,第一个为基础镜像,以centos7为基础构建新的基础镜像base.Dockerfile,第二个镜像为服务部署镜像server.Dockerfile,以第一个镜像base.Dockerfile构建出的镜像为基础镜像进行构建 整个基础镜像的构…

防火墙无非就这8种类型,小白完全不用怕!

你们好,我的网工朋友。 当我们谈到网络开放性带来的安全挑战时,都会想起黑客、病毒、恶意软件等等。 而正是因为这些威胁,让网络安全变成了网络世界里的重要议题,如果说起怎么保护网络安全,基本上我们都会第一时间想…

Java8新特性:函数式(Functional)接口

我是南城余!阿里云开发者平台专家博士证书获得者! 欢迎关注我的博客!一同成长! 一名从事运维开发的worker,记录分享学习。 专注于AI,运维开发,windows Linux 系统领域的分享! 本…

Spark环境搭建和使用方法

目录 一、安装Spark (一)基础环境 (二)安装Python3版本 (三)下载安装Spark (四)配置相关文件 二、在pyspark中运行代码 (一)pyspark命令 &#xff08…

HTTP 403错误:禁止访问,如何解除

“HTTP 403错误,禁止访问!”这句话是不是听起来就像是在告诉你:“嘿,你没有权限进这个房间!”没错,这就是你尝试访问某个网站或资源时可能会遇到的问题。别急,这里有一份秘籍,教你如…

Cobalt Strike四种提权方法

简介 Cobalt Strike是一款基于java的渗透测试神器,常被业界人称为CS神器。自3.0以后已经不在使用Metasploit框架而作为一个独立的平台使用,分为客户端与服务端,服务端是一个,客户端可以有多个,非常适合团队协同作战&a…

剧本杀小程序成为创业者新选择,剧本杀小程序开发

剧本杀作为现下年轻人最喜欢的新兴行业,发展前景非常乐观,即使剧本杀目前处于创新发展阶段,但剧本杀行业依然在快速发展中。 根据业内数据,预计2025年剧本杀市场规模能达到四百多亿元。市场规模的扩大自然也吸引来了不少的创业者…

最前端|Locofy试用报告:设计稿直接转换为代码

目录 一、调研目的 二、调研报告设计 三、调研报告 (一)操作步骤 (二)结果初见 (三)初步结论 四、总结 五、补充 一、调研目的 初步调研的目标: locofy 的 实操流程locofy 涉及到的相关工作角色及其…

TOUGH系列软件实践技术应用

TOUGH系列软件是由美国劳伦斯伯克利实验室开发的,旨在解决非饱和带中地下水、热运移的通用模拟软件。和传统地下水模拟软件Feflow和Modflow不同,TOUGH系列软件采用模块化设计和有限积分差网格剖分方法,通过配合不同状态方程(EOS模…

el-tree搜索的使用

2023.12.11今天我学习了如何对el-tree进行搜索的功能,效果如下: 代码如下: 重点部分:给el-tree设置ref,通过监听roleName的变化过滤数据。 default-expand-all可以设置默认展开全部子节点。 check可以拿到当前节点的…

程序员必读:Python 中如何完美处理日志记录?

日志记录在软件开发中扮演着至关重要的角色。它不仅可以帮助开发人员跟踪应用程序的状态和行为,还能提供有价值的诊断信息。Python 提供了内置的 logging 模块,为开发者提供了一个强大且灵活的日志记录工具。 日志的重要性 在软件开发中,对…

数字孪生的开发平台

数字孪生在国内得到了越来越多的关注,一些公司和平台提供了数字孪生的开发服务。以下是一些国内数字孪生的开发平台或服务提供商,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 1.华为数字…

低功耗全极霍尔开关国产芯片D02,适用于手机或笔记本电脑等产品中,数字输出 2.4V~5.5V的电池供电

D02 是一款低功耗全极霍尔开关,用于检测施加的磁通量密度,并提供一个数字输出,该输出指示所感测磁通量幅度的当前状态。这些应用的一个例子是翻盖手机中的 ON/OFF 开关。 微功耗设计特别适合电池供电系统,如手机或笔记本电脑&…