基于YOLOv8深度学习的吸烟/抽烟行为检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

news2024/12/23 19:46:20

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:吸烟行为检测对于维护公共场所的健康环境、防止火灾事故的发生以及促进健康生活方式都具有重要作用。使用基于YOLOv8的吸烟行为检测系统能够有效识别视频中的吸烟行为,从而及时采取适当措施。本文基于YOLOv8深度学习框架,通过2357张图片,训练了一个进行吸烟行为的目标检测模型,准确率高达96%。并基于此模型开发了一款带UI界面的吸烟行为检测系统,可用于实时检测场景中的吸烟行为,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

吸烟行为检测系统是一种重要的实时监控工具,它对于维护公共场所的健康环境、防止火灾事故的发生以及促进健康生活方式都具有重要作用。使用基于YOLOv8的吸烟行为检测系统能够有效识别视频中的吸烟行为,从而及时采取适当措施。

在众多应用场景中,吸烟行为检测尤为关键。例如,在不允许吸烟的公共区域,如医院、学校、购物中心、机场和餐馆等,此系统能够确保这些区域的空气质量,防止受到二手烟的影响。在商业大厦与工作场所,监测吸烟行为有助于遵守法律法规,并可能与健康保险政策挂钩,降低因吸烟相关疾病带来的成本。
此外,该系统在防火安全管理上同样至关重要。吸烟是引起火灾的主要原因之一,特别是在加油站、化工厂或爆炸性物质储存区等高风险地区的安全监控中,吸烟行为的早期检测可以有效预防火灾和其他安全事故的发生。在住宅区和酒店,吸烟检测系统同样有助于确保室内环境符合住宅政策,并保障居民与客人的健康。
综上所述,吸烟行为检测系统的推广和应用能够帮助管理者迅速响应吸烟事件,制定并执行吸烟禁令,同时为全社会创造一个更加健康、安全的环境。

博主通过搜集吸烟行为的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的吸烟行为检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可实时进行吸烟行为状态的目标检测;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述

在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于吸烟行为的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含2357张图片,其中训练集包含1885张图片验证集包含472张图片,部分图像及标注如下图所示。
在这里插入图片描述

在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入SmokeData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\SmokeDetection\datasets\SmokeData\train
val: E:\MyCVProgram\SmokeDetection\datasets\SmokeData\val

nc: 1
names: ['Smoke']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/SmokeData/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5已经达到了0.958,结果还是十分不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/smoke_b000918.jpg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)


# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款吸烟行为检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的吸烟行为检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1308373.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

桥梁巡查管理二维码

随着互联网世界的发展,二维码随处可见。二维码已经融入到我们生活的各个方面,不管是买东西,还是参观展览,甚至当我们走在路上,路牌上都会有二维码。甚至很多桥梁都用二维码来管理。 使用二维码管理桥梁能实现哪些功能…

有监督学习、无监督学习、半监督学习和强化学习

有监督学习 训练数据有标签 无监督学习 数据是没有标签的 聚类的思想:通过计算空间中的距离来判断是否属于同一类 强化学习 和环境交互,从环境中学习 三者对比 半监督学习 少量有标注,大量无标注 三个假设 1.连续性/平滑性假设:相…

肥猫游戏报价器|计价器|王者荣耀代练陪练等游戏报价器软件介绍说明

目录 1. 前言2. 软件著作权3. 软件使用说明3.1 进入软件3.2 用户登录3.3 首页3.4 报价器3.4.1 总体介绍3.4.2 王者报价器3.4.3 LOL手游报价器3.4.4 英雄联盟报价器3.4.5 云顶之弈报价器3.4.7 王者水晶报价器3.4.8 和平精英报价器3.4.9 蛋仔派对报价器3.4.10 穿越火线报价器3.4.…

验证栈序列(栈压入、弹出序列),剑指offer,力扣

目录 题目地址: 相同题型: 我们直接看题解吧: 解题方法: 审题目事例提示: 解题分析: 解题思路: 代码实现: 题目地址: 946. 验证栈序列 - 力扣(LeetCode&#…

想入门Web测试,看这篇文章!

今天要谈的是很多软件测试工程师都需要面对的——Web测试 不管你是处在二十不惑的青春有你阶段还是三十而已的乘风破浪阶段我们都需要面对“Web测试”。 Web测试其实有以下几个方面: 1、页面测试 大多数的Web网站的网页都是html语言编写的,测试工程师…

网络基础(九):VLAN的概述及配置

目录 前言 一、分割广播域的方法 二、VLAN 1、VLAN的概述及优势 1.1VLAN的概述 1.2VLAN的优势 2、VLAN的种类 3、VLAN的三种端口类型 4、VLAN 的工作原理 4.1VLAN数据帧 4.2VLAN的范围 4.2VLAN的access类型工作原理 4.3VLAN的trunk类型工作原理 4.4VLAN的Hybird类…

算法中的最优化方法课程复习

算法中的最优化方法课程复习 单模函数、拟凸函数、凸函数证明证明一个线性函数与一个凸函数的和也是凸的 梯度线性规划标准形式以及如何标准化标准形式常见标准化方法线性化技巧 单纯形法二次规划无约束优化Nelder-Mead线搜索FR共轭梯度法例题 优化算法的选择、停止准则算法选择…

主动学习与弱监督学习

人工智能数据的获取没有想象中的那么简单,虽然我们早已身处大数据的浪潮下,很多公司在获取数据的大浪中翻滚却始终没有找到一个合适的获取数据的渠道。很多情况下,获取高质量的人工智能数据需要消耗大量的人力、时间、金钱,但是对…

Py之scikit-surprise:scikit-surprise的简介、安装、使用方法之详细攻略

Py之scikit-surprise:scikit-surprise的简介、安装、使用方法之详细攻略 目录 scikit-surprise的简介 1、基准测试 Movielens 100k Movielens 1M scikit-surprise的安装 scikit-surprise的使用方法 1、基础用法 (1)、简单的示例,展示如何&#x…

分类预测 | Matlab实现HPO-GRU【23年新算法】基于猎食者优化算法优化门控循环单元的数据分类预测

分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机的数据分类预测【23年新算法】 目录 分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机的数据分类预测【23年新算法】分类效果基本描述程序设计参考资料 分类效果 基本描述 1.HPO-GRU【23年新算法】基于猎食者优化算法优…

生物燃料市场分析:预计2029年将达到1968亿美元

生物燃料(biofuel)泛指由生物质组成或萃取的固体、液体或气体燃料,可以替代由石油制取的汽油和柴油,是可再生能源开发利用的重要方向。所谓的生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质…

配置文件中的$和@

配置文件中的$和 0、前言 借鉴文章: https://blog.csdn.net/Saintmm/article/details/124603343 https://blog.csdn.net/ster_ben/article/details/119295815在yml配置文件中,可以使用${}和{}来引用其他配置项的值作为配置项的值。 spring:applicati…

19、WEB攻防——.NET项目DLL反编译未授权访问配置调试报错

文章目录 一、.NET项目——DLL文件反编译指向—代码特性二、.NET项目——Web.config错误调试—信息泄露三、.NET项目——身份验证未授权访问—安全漏洞 web搭配: windowsiisaspaccesswindowsiisaspxsqlserver 一、.NET项目——DLL文件反编译指向—代码特性 bin目…

基于物联网的智能仓管理系统方案

基于物联网的智能仓管理系统方案 一、项目背景 随着企业业务的快速发展,传统的人工仓库管理方式已经无法满足现代企业的需求。仓库运营效率低下、货物出入库错误、库存不准确等问题不断涌现。因此,我们提出一个基于物联网技术的智能仓管理系统方案&…

被围绕的区域[中等]

一、题目 给你一个m x n的矩阵board,由若干字符X和O,找到所有被X围绕的区域,并将这些区域里所有的O用X填充。 示例 1: 输入:board [["X","X","X","X"],["X",&qu…

输入一组数据,以-1结束输入[c]

我们新手写题时总能看到题目中类似这样的输入 没有给固定多少个数据,我们没有办法直接设置数组的元素个数,很纠结,下面我来提供一下本人的方法(新手,看到有错误或者不好的地方欢迎大佬指出,纠正&#xff0…

NOIP2017提高组day2 - T2:宝藏

题目链接 [NOIP2017 提高组] 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n n n 个深埋在地下的宝藏屋, 也给出了这 n n n 个宝藏屋之间可供开发的 m m m 条道路和它们的长度。 小明决心亲自前往挖掘所有宝藏屋中的宝藏。但…

Linux 安装图形界面 “startx”

———————————————— 报错,如下: bash :startx command not found ———————————————— 解决方法: 1.先安装 — X Windows System,输入以下命令: yum groupinstall “X Window System”…

IPQ6010 vs IPQ8072 What’s the difference?|802.11AX WiFi6 Solution DR6018 DR8072

IPQ6010 vs IPQ8072 What’s the difference?|802.11AX WiFi6 Solution DR6018 DR8072 IPQ6010 vs IPQ8072: In-Depth Comparison and Selection Guide The rapid evolution of networking technologies has driven continuous innovation in routers and network devices. Am…

鸿蒙(HarmonyOS)北向开发项目编译问题汇总

运行Hello World Hello World 工程可以运行在模拟器中,或者运行在真机设备中。本示例先以选择将 Hello World 工程运行在模拟器中进行说明,如果选择运行在真机设备中,需要先对工程进行签名,然后才能运行在真机设备中。 DevEco S…