被围绕的区域[中等]

news2025/1/23 8:00:14

一、题目

给你一个m x n的矩阵board,由若干字符XO,找到所有被X围绕的区域,并将这些区域里所有的OX填充。

示例 1:

输入:board = [["X","X","X","X"],["X","O","O","X"],["X","X","O","X"],["X","O","X","X"]]
输出:[["X","X","X","X"],["X","X","X","X"],["X","X","X","X"],["X","O","X","X"]]
解释:被围绕的区间不会存在于边界上,换句话说,任何边界上的O都不会被填充为X。 任何不在边界上,或不与边界上的O相连的O最终都会被填充为X。如果两个元素在水平或垂直方向相邻,则称它们是“相连”的。

示例 2:
输入:board = [["X"]]
输出:[["X"]]

::: warning
m == board.length
n == board[i].length
1 <= m, n <= 200
board[i][j]XO
:::

二、代码

本题给定的矩阵中有三种元素:
1、字母X
2、被字母X包围的字母O
3、没有被字母X包围的字母O

本题要求将所有被字母X包围的字母 O都变为字母X,但很难判断哪些O是被包围的,哪些O不是被包围的。

注意到题目解释中提到:任何边界上的O都不会被填充为X。 我们可以想到,所有的不被包围的O都直接或间接与边界上的O相连。我们可以利用这个性质判断O是否在边界上,具体地说:
1、对于每一个边界上的O,我们以它为起点,标记所有与它直接或间接相连的字母O
2、最后我们遍历这个矩阵,对于每一个字母:如果该字母被标记过,则该字母为没有被字母X包围的字母O,我们将其还原为字母O;如果该字母没有被标记过,则该字母为被字母X包围的字母O,我们将其修改为字母X

【1】深度优先搜索: 我们可以使用深度优先搜索实现标记操作。在下面的代码中,我们把标记过的字母O修改为字母A

class Solution {
    int n, m;

    public void solve(char[][] board) {
        n = board.length;
        if (n == 0) {
            return;
        }
        m = board[0].length;
        for (int i = 0; i < n; i++) {
            dfs(board, i, 0);
            dfs(board, i, m - 1);
        }
        for (int i = 1; i < m - 1; i++) {
            dfs(board, 0, i);
            dfs(board, n - 1, i);
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (board[i][j] == 'A') {
                    board[i][j] = 'O';
                } else if (board[i][j] == 'O') {
                    board[i][j] = 'X';
                }
            }
        }
    }

    public void dfs(char[][] board, int x, int y) {
        if (x < 0 || x >= n || y < 0 || y >= m || board[x][y] != 'O') {
            return;
        }
        board[x][y] = 'A';
        dfs(board, x + 1, y);
        dfs(board, x - 1, y);
        dfs(board, x, y + 1);
        dfs(board, x, y - 1);
    }
}

时间复杂度: O(n×m),其中nm分别为矩阵的行数和列数。深度优先搜索过程中,每一个点至多只会被标记一次。
空间复杂度: O(n×m),其中nm分别为矩阵的行数和列数。主要为深度优先搜索的栈的开销。

【2】广度优先搜索: 我们可以使用广度优先搜索实现标记操作。在下面的代码中,我们把标记过的字母O修改为字母A

class Solution {
    int[] dx = {1, -1, 0, 0};
    int[] dy = {0, 0, 1, -1};

    public void solve(char[][] board) {
        int n = board.length;
        if (n == 0) {
            return;
        }
        int m = board[0].length;
        Queue<int[]> queue = new LinkedList<int[]>();
        for (int i = 0; i < n; i++) {
            if (board[i][0] == 'O') {
                queue.offer(new int[]{i, 0});
                board[i][0] = 'A';
            }
            if (board[i][m - 1] == 'O') {
                queue.offer(new int[]{i, m - 1});
                board[i][m - 1] = 'A';
            }
        }
        for (int i = 1; i < m - 1; i++) {
            if (board[0][i] == 'O') {
                queue.offer(new int[]{0, i});
                board[0][i] = 'A';
            }
            if (board[n - 1][i] == 'O') {
                queue.offer(new int[]{n - 1, i});
                board[n - 1][i] = 'A';
            }
        }
        while (!queue.isEmpty()) {
            int[] cell = queue.poll();
            int x = cell[0], y = cell[1];
            for (int i = 0; i < 4; i++) {
                int mx = x + dx[i], my = y + dy[i];
                if (mx < 0 || my < 0 || mx >= n || my >= m || board[mx][my] != 'O') {
                    continue;
                }
                queue.offer(new int[]{mx, my});
                board[mx][my] = 'A';
            }
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (board[i][j] == 'A') {
                    board[i][j] = 'O';
                } else if (board[i][j] == 'O') {
                    board[i][j] = 'X';
                }
            }
        }
    }
}

时间复杂度: O(n×m),其中nm分别为矩阵的行数和列数。广度优先搜索过程中,每一个点至多只会被标记一次。
空间复杂度: O(n×m),其中nm分别为矩阵的行数和列数。主要为广度优先搜索的队列的开销。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1308346.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

输入一组数据,以-1结束输入[c]

我们新手写题时总能看到题目中类似这样的输入 没有给固定多少个数据&#xff0c;我们没有办法直接设置数组的元素个数&#xff0c;很纠结&#xff0c;下面我来提供一下本人的方法&#xff08;新手&#xff0c;看到有错误或者不好的地方欢迎大佬指出&#xff0c;纠正&#xff0…

NOIP2017提高组day2 - T2:宝藏

题目链接 [NOIP2017 提高组] 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图&#xff0c;藏宝图上标出了 n n n 个深埋在地下的宝藏屋&#xff0c; 也给出了这 n n n 个宝藏屋之间可供开发的 m m m 条道路和它们的长度。 小明决心亲自前往挖掘所有宝藏屋中的宝藏。但…

Linux 安装图形界面 “startx”

———————————————— 报错&#xff0c;如下&#xff1a; bash :startx command not found ———————————————— 解决方法&#xff1a; 1.先安装 — X Windows System&#xff0c;输入以下命令&#xff1a; yum groupinstall “X Window System”…

IPQ6010 vs IPQ8072 What’s the difference?|802.11AX WiFi6 Solution DR6018 DR8072

IPQ6010 vs IPQ8072 What’s the difference?|802.11AX WiFi6 Solution DR6018 DR8072 IPQ6010 vs IPQ8072: In-Depth Comparison and Selection Guide The rapid evolution of networking technologies has driven continuous innovation in routers and network devices. Am…

鸿蒙(HarmonyOS)北向开发项目编译问题汇总

运行Hello World Hello World 工程可以运行在模拟器中&#xff0c;或者运行在真机设备中。本示例先以选择将 Hello World 工程运行在模拟器中进行说明&#xff0c;如果选择运行在真机设备中&#xff0c;需要先对工程进行签名&#xff0c;然后才能运行在真机设备中。 DevEco S…

Proxmox创建CentOS虚拟机

文章目录 下载ISO安装文件上传创建虚拟机启动虚拟机设置DNS CentOS配置国内安装源备份原有安装源下载更新国内源清理yum缓存制作新配置文件缓存 下载ISO安装文件 下载地址&#xff1a;https://www.xitongzhijia.net/ 也可去官网进行下载 上传 下面介绍直接通过页面上传&…

三、Java运算符

1.运算符和表达式 运算符&#xff1a; ​ 就是对常量或者变量进行操作的符号。 ​ 比如&#xff1a; - * / 表达式&#xff1a; ​ 用运算符把常量或者变量连接起来的&#xff0c;符合Java语法的式子就是表达式。 ​ 比如&#xff1a;a b 这个整体就是表达式。 ​ 而其…

11.仿简道云公式函数实战-逻辑函数-TRUE

1. TRUE函数 TRUE 函数可直接返回逻辑值 true。 2. 函数用法 TRUE() 3. 函数示例 TRUE 函数一般不会作为函数单独使用&#xff0c;可与其他函数一起使用&#xff0c;或作为判断逻辑的结果。如&#xff0c;判断字段值是否为空时&#xff0c;设置公式为IF(ISEMPTY(方案选择)…

2023-12-12 AIGC-AI工具的基本工作原理

摘要: 2023-12-12 AIGC-AI工具的基本工作原理 AI工具的基本工作原理 AI工具的基本工作原理涉及到一系列复杂的技术和算法。这些原理可以根据不同类型的AI工具进行概括&#xff0c;包括机器学习、自然语言处理、图像识别等。以下是一些关键的AI工具及其工作原理的概述&#xff…

基础算法(1):排序(1):选择排序

今天对算法产生了兴趣&#xff0c;开始学习基础算法&#xff0c;比如排序&#xff0c;模拟&#xff0c;贪心&#xff0c;递推等内容&#xff0c;算法是很重要的&#xff0c;它是解决某个问题的特定方法&#xff0c;程序数据结构算法&#xff0c;所以对算法的学习是至关重要的&a…

【知网稳定检索】第三届人文,智慧教育与服务管理国际学术会议(HWESM 2024)

第三届人文&#xff0c;智慧教育与服务管理国际学术会议&#xff08;HWESM 2024&#xff09; 2024 3rd International Conference on Humanities, Wisdom Education and Service Management 第三届人文&#xff0c;智慧教育与服务管理国际学术会议&#xff08;HWESM 2024&…

LangChain学习二:提示-实战(上半部分)

文章目录 上一节内容&#xff1a;LangChain学习一&#xff1a;模型-实战学习目标&#xff1a;提示词及提示词模板的运用学习内容一&#xff1a;什么是提示词&#xff1f;学习内容二&#xff1a;提示词模板2.1 入门2.2 模板格式2.3 验证模板2.4 序列化提示模板2.5 将少量示例传递…

Linux 高级管理,MySQL服务器的构建与维护

实验环境 某公司因业务范围日益扩大&#xff0c;最近订购了一套基于B/S架构的电子商务系统&#xff0c;在正式部署之前&#xff0c;要 求对现有的httpd服务器进行改造&#xff0c;首先需要增加MySQL数据库服务。 需求描述 1. 编译安装MySQL服务器&#xff0c;并添加为mysqld系…

Centos7防火墙及端口开启

1、防火墙 1.1、查看防火墙是否开启 systemctl status firewalld 1.2、开启防火墙 firewall-cmd --list-ports 1.3、重启防火墙 firewall-cmd --reload 2、端口 2.1、查看所有已开启的端口号 firewall-cmd --list-ports 2.2、手动开启端口 启动防火墙后&#xff0c;默认没有开…

Mybatis-Plus源码解析之MybatisPlusAutoConfiguration(二)

group : com.baomidou version:3.5.2.2-SNAPSHOT SpringBoot是自动装配。Spring则可以在配置类上Import(MybatisPlusAutoConfiguration.class) org.springframework.boot.autoconfigure.EnableAutoConfiguration\com.baomidou.mybatisplus.autoconfigure.MybatisPlusLanguageD…

如何想成为嵌入式工程师?(这些东西您必须知道)

嵌入式的发展怎么样&#xff1f; 嵌入式系统领域一直在迅速发展&#xff0c;伴随着物联网、智能设备、汽车电子、医疗设备等应用的不断增加&#xff0c;对嵌入式技术的需求也在不断扩大。因此&#xff0c;嵌入式领域仍然是一个充满机会的领域&#xff0c;为专业人士提供…

AC修炼计划(AtCoder Beginner Contest 332)

传送门&#xff1a;AtCoder Beginner Contest 332 - AtCoder a,b,c都还是很基础了。d题是一个bfs的纯暴力问题。 E - Lucky bag 看看范围&#xff0c;n15&#xff0c;第一个想法是dfs纯暴力&#xff0c;但所有的情况太大&#xff0c;各种决策层出不穷&#xff0c;会t。所以转…

黑马程序员Javaweb重点笔记(五)(2023版)

文章目录 前言事务管理事务进阶AOPAOP基础 前言 我个人有一个学习习惯就是把学过的内容整理出来一份重点笔记&#xff0c;笔记往往只会包括我认为比较重要的部分或者容易忘记的部分&#xff0c;以便于我快速复习&#xff0c;如果有错误欢迎大家批评指正。 另外&#xff1a;本篇…

GetGuru替代方案:4个理由告诉你为什么选择HelpLook

随着知识管理在现代企业中的重要性日益凸显&#xff0c;选择一款高效、稳定的知识库软件成为了关键。然而&#xff0c;市场上的知识库软件众多&#xff0c;如何选择适合自己的产品呢&#xff1f;本文将为你介绍GetGuru的替代方案——HelpLook&#xff0c;并从四个方面为你分析为…

大数据机器学习深度解读决策树算法:技术全解与案例实战

大数据机器学习深度解读决策树算法&#xff1a;技术全解与案例实战 本文深入探讨了机器学习中的决策树算法&#xff0c;从基础概念到高级研究进展&#xff0c;再到实战案例应用&#xff0c;全面解析了决策树的理论及其在现实世界问题中的实际效能。通过技术细节和案例实践&…