【论文阅读笔记】NeRF+Mip-NeRF+Instant-NGP

news2024/11/25 18:33:02

目录

  • 前言
  • NeRF
    • 神经辐射场
    • 体渲染
      • 连续体渲染
      • 体渲染离散化
    • 方法
      • 位置编码
      • 分层采样
      • 体渲染推导公式(1)到公式(2)
      • 部分代码解读
        • 相机变换(重要!)
  • Mip-Nerf
    • To do
  • Instant-NGP
    • To do

前言

NeRF是NeRF系列的开山之作,将三维场景隐式的表达为神经网络的权重用于新视角合成
MipNeRF和Instant NGP分别代表了NeRF的两个研究方向,前者是抗锯齿,代表着渲染质量提升方向;后者是采用多分辨率哈希表用于加速NeRF的训练与推理速度。

通过NeRF实现新视角合成

NeRF

Title:NeRF: Representing Scenes asNeural Radiance Fields for View Synthesis
Code:nerf-pytorch
From:ECCV 2020 Oral - Best Paper Honorable Mention

神经辐射场

在这里插入图片描述
辐射场可以理解光线场,给定多张带有相机内外参的二维图片,从摄像机出发,引出到每一个像素的光线,通过对这条光线经历过的空间点的颜色 c c c和体密度体密度 σ \sigma σ进行累积,以得到二维图片上像素点的颜色,从而实现端到端训练。在这个过程中,没有显式的三维结构,如点云、体素或者Mesh,而是通过神经网络的权重 F θ F_{\theta} Fθ将三维场景连续的存储起来,通过空间位置(三维点 [ x , y , z ] [x,y,z] [x,y,z])和视角方向(球坐标系下的极角和方位角 [ θ , ϕ ] [\theta,\phi] [θ,ϕ])作为查询条件,查询出给定摄像机下的光线所经过的空间点颜色 c c c和体密度 σ \sigma σ,通过**体渲染(Volume Rendering)**得到该条光线对应像素点的颜色。

体渲染

P为三维空间中的一个点;o是摄像机的光心在世界坐标系的坐标;d为视角方向,单位向量;t为实数,表示o沿视角方向到P点的距离r(t);t n ≤ t ≤ t f ; t f,t f 分别为三维场景的近和远边界

沿着视角方向的光线上的点P可以用上图来表示,尽管论文中提到视角方向是使用 θ , ϕ \theta,\phi θ,ϕ来表示的,但代码中还是使用单位向量 d d d来表示的

连续体渲染

体渲染实际上就是将视线r上所有的点通过某种方式累计投射到图像上形成像素颜色 C ( r ) C(r) C(r)的过程:
C ( r ) = ∫ t n t f T ( t ) σ ( r ( t ) ) c ( r ( t ) , d ) d t where  T ( t ) = exp ⁡ ( − ∫ t n t σ ( r ( s ) ) d s ) (1) {C}(\boldsymbol{r})=\int_{t_n}^{t_f} T(t) \sigma(\boldsymbol{r}(t)) \boldsymbol{c}(\boldsymbol{r}(t), \boldsymbol{d}) dt \\ \text{where } T(t)=\exp \left(-\int_{t_n}^t \sigma(\boldsymbol{r}(s)) d s\right)\tag{1} C(r)=tntfT(t)σ(r(t))c(r(t),d)dtwhere T(t)=exp(tntσ(r(s))ds)(1)

其中, c ( r ( t ) , d ) \boldsymbol{c}(\boldsymbol{r}(t), \boldsymbol{d}) c(r(t),d)为三维点 r ( t ) r(t) r(t) d d d这个方向看到的颜色值; σ ( r ( t ) ) \sigma(\boldsymbol{r}(t)) σ(r(t))为体密度函数,反映的是该三维点的物理材质吸收光线的能力; T ( t ) T(t) T(t)反映的是射线上从 t n t_n tn t t t的累积透射率。tn和tf首先确定了nerf的边界,而不至于学习到无穷远;其次避免了光心到近景范围内无效采样
直观上理解σ,可以解释为每个三维点吸收光线的能力,光经过该点,一部分被吸收,一部分透射,光的强度(可以理解为 T ( t ) T(t) T(t)) 在逐渐减小,当光强为0时,后面的三维点即便可以吸收颜色,也不会对像素颜色有贡献。指数函数保证了随着σ的累积,光的强度从1逐渐减为0。

体渲染离散化

其实就是函数离散化的形式,将tn到tf拆分成N个均匀的分布空间,从每个区间中随机选取一个样本ti:

t i ∼ U [ t n + i − 1 N ( t f − t n ) , t n + i N ( t f − t n ) ] i  从1到N t_i \sim \mathcal{U}\left[t_n+\frac{i-1}{N}\left(t_f-t_n\right), t_n+\frac{i}{N}\left(t_f-t_n\right)\right] \quad i \text{ 从1到N} tiU[tn+Ni1(tftn),tn+Ni(tftn)]i 1N

然后将连续体渲染公式离散化:

C ^ ( r ) = ∑ i = 1 N T i ( 1 − exp ⁡ ( − σ i δ i ) ) c i where  T i = exp ⁡ ( − ∑ j = 1 i − 1 σ j δ j ) (2) \hat{C}(\mathbf{r})=\sum_{i=1}^N T_i\left(1-\exp \left(-\sigma_i \delta_i\right)\right) \mathbf{c}_i \quad \tag 2 \\ \text{where } T_i=\exp \left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right) C^(r)=i=1NTi(1exp(σiδi))ciwhere Ti=exp(j=1i1σjδj)(2)
where T i = exp ⁡ ( − ∑ j = 1 i − 1 σ j δ j ) T_i=\exp \left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right) Ti=exp(j=1i1σjδj)
其中, δ i = t i + 1 − t i \delta_i=t_{i+1}-t_i δi=ti+1ti 表示相邻采样点之间的距离

在这里插入图片描述
但均匀采样有明显的问题, 比如体密度较大的点如果在两个采样点之间,那么永远不可能采样到。从上图中可看出,左半张代表均匀采样,右半张代表真实分布,左边由于表面两侧被采样到,只能反应这个区间内可能存在表面,但估计的σ不一定准确。
作者提出了分层采样来试图解决这个问题。

方法

位置编码

在这里插入图片描述
网络结构由如上图所示全连接网络组成,输入x,d分别分三维点的空间位置和视线方向。该三维点的体密度只与空间位置相关,颜色还和视角相关

γ ( p ) = ( sin ⁡ ( 2 0 π p ) , cos ⁡ ( 2 0 π p ) , ⋯   , sin ⁡ ( 2 L − 1 π p ) , cos ⁡ ( 2 L − 1 π p ) ) \gamma(p)=\left(\sin \left(2^0 \pi p\right), \cos \left(2^0 \pi p\right), \cdots, \sin \left(2^{L-1} \pi p\right), \cos \left(2^{L-1} \pi p\right)\right) γ(p)=(sin(20πp),cos(20πp),,sin(2L1πp),cos(2L1πp))

还可以注意到γ(x)和γ(d)分别是对位置坐标和方向坐标的位置编码(标准正余弦位置编码),这是由于单纯坐标只能体现低频信息,位置编码可以有效的区分开两个距离很近的坐标(即低频接近但高频编码分开【但或许也有问题,离得特别近的两个点或许低频信息也不相似,私以为mipnerf考虑三维点邻域的区间,在一定程度上可以缓解】),从而帮助网络学习到高频几何和纹理细节。如下图所示,视角信息有效反应高光信息,位置编码有助于恢复高频细节。
在这里插入图片描述

分层采样

除了上述提到的均匀采样可能导致i真实表面难以正好采样到,还有均匀采样带来了很多无意义空间的无效采样,简单来说,只有空气的地方没必要进行采样,或者被遮挡区域(可见性问题,不可见区域也没必要采样,需要提前判断累积透射率是否为降为0)。
在这里插入图片描述

首先均匀采样可以得到crose color,wi可以理解为同条射线被采样的 N c N_c Nc个三维点颜色的权重:
C ^ c ( r ) = ∑ i = 1 N c w i c i , w i = T i ( 1 − exp ⁡ ( − σ i δ i ) ) \widehat{C}_c(\mathbf{r})=\sum_{i=1}^{N_c} w_i c_i, \quad w_i=T_i\left(1-\exp \left(-\sigma_i \delta_i\right)\right) C c(r)=i=1Ncwici,wi=Ti(1exp(σiδi))

根据均匀采样点的权重值归一化后按重要性重新采样得到新的 n f n_f nf个位置

w ^ i = w i / ∑ j = 1 N c w j \widehat{w}_i=w_i / \sum_{j=1}^{N_c} w_j w i=wi/j=1Ncwj

最后损失函数可以表示为:

L = ∑ r ∈ R [ ∥ C ^ c ( r ) − C ( r ) ∥ 2 2 + ∥ C ^ f ( r ) − C ( r ) ∥ 2 2 ] \mathcal{L}=\sum_{\mathbf{r} \in \mathcal{R}}\left[\left\|\widehat{C}_c(\mathbf{r})-C(\mathbf{r})\right\|_2^2+\left\|\widehat{C}_f(\mathbf{r})-C(\mathbf{r})\right\|_2^2\right] L=rR[ C c(r)C(r) 22+ C f(r)C(r) 22]

这里为什么选用两个网络来分别做粗糙采样和精细采样,参考大佬【
】。crose网络是用于均匀采样的,包含更多的是低频信息的查询,而fine网络用于重要性采样,适用于三维点高频细节的查询,两个网络起到了类似滤波器的作用。

「待做实验验证!!!Todo」

体渲染推导公式(1)到公式(2)

首先,光线通过区间 [ 0 , t + d t ) [0, t+d t) [0,t+dt) 的概率:
光线通过区间 [ 0 , t + d t ) [0, t+d t) [0,t+dt) 的概率:
T ( t + d t ) = T ( t ) ⋅ ( 1 − d t ⋅ σ ( t ) ) \begin{aligned} \mathcal{T}(t+d t) & =\mathcal{T}(t) \cdot(1-d t \cdot \sigma(t)) \end{aligned} T(t+dt)=T(t)(1dtσ(t))
可以得到
T ( t + d t ) − T ( t ) d t ≡ T ′ ( t ) = − T ( t ) ⋅ σ ( t ) \begin{aligned} \frac{\mathcal{T}(t+d t)-\mathcal{T}(t)}{d t} & \equiv \mathcal{T}^{\prime}(t)=-\mathcal{T}(t) \cdot \sigma(t) \end{aligned} dtT(t+dt)T(t)T(t)=T(t)σ(t)
1 − T ( t ) 1-\mathcal{T}(t) 1T(t) 为光线在区间 [ 0 , t ) [0, t) [0,t) 被终止的累积分布函数(CDF);
T ( t ) σ ( t ) \mathcal{T}(t) \sigma(t) T(t)σ(t) 为其对应的概率密度函数 (PDF)

其中, T ( t ) \mathcal{T}(t) T(t) 为光线通过区间 [ 0 , t ) [0, t) [0,t) 透射率,也就是没被终止的概率,从1->0; σ ( t ) \sigma(t) σ(t) 为体密度函数; d t ⋅ σ ( t ) d t \cdot \sigma(t) dtσ(t) 为光线在 [ t , t + d t ) [t, t+d t) [t,t+dt) 区间被吸收的概率,也就是被终止概率。
T ′ ( t ) = − T ( t ) ⋅ σ ( t ) T ′ ( t ) T ( t ) = − σ ( t ) ∫ a b T ′ ( t ) T ( t ) d t = − ∫ a b σ ( t ) d t log ⁡ T ( t ) ∣ a b = − ∫ a b σ ( t ) d t T ( a → b ) ≡ T ( b ) T ( a ) = exp ⁡ ( − ∫ a b σ ( t ) d t ) \begin{aligned} \mathcal{T}^{\prime}(t) & =-\mathcal{T}(t) \cdot \sigma(t) \\ \frac{\mathcal{T}^{\prime}(t)}{\mathcal{T}(t)} & =-\sigma(t) \\ \int_a^b \frac{\mathcal{T}^{\prime}(t)}{\mathcal{T}(t)} d t & =-\int_a^b \sigma(t) d t \\ \left.\log \mathcal{T}(t)\right|_a ^b & =-\int_a^b \sigma(t) d t \\ \mathcal{T}(a \rightarrow b) \equiv \frac{\mathcal{T}(b)}{\mathcal{T}(a)} & =\exp \left(-\int_a^b \sigma(t) d t\right) \end{aligned} T(t)T(t)T(t)abT(t)T(t)dtlogT(t)abT(ab)T(a)T(b)=T(t)σ(t)=σ(t)=abσ(t)dt=abσ(t)dt=exp(abσ(t)dt)
T ( a → b ) \mathcal{T}(a \rightarrow b) T(ab) 表示光线通过 a a a b b b 区间没被终止的概率,假设 [ a , b ) [a,b) [a,b) 共享 a a a点体密度和颜色

C = ∫ 0 D T ( t ) ⋅ σ ( t ) ⋅ c ( t ) d t + T ( D ) ⋅ c b g C=\int_0^D \mathcal{T}(t) \cdot \sigma(t) \cdot \mathbf{c}(t) d t+\mathcal{T}(D) \cdot \mathbf{c}_{\mathrm{bg}} C=0DT(t)σ(t)c(t)dt+T(D)cbg
c b g c_{b g} cbg 表示背景色彩

C ( a → b ) = ∫ a b T ( a → t ) ⋅ σ ( t ) ⋅ c ( t ) d t = σ a ⋅ c a ∫ a b T ( a → t ) d t = σ a ⋅ c a ∫ a b exp ⁡ ( − ∫ a t σ ( u ) d u ) d t = σ a ⋅ c a ∫ a b exp ⁡ ( − σ a u ∣ a t ) d t = σ a ⋅ c a ∫ a b exp ⁡ ( − σ a ( t − a ) ) d t = σ a ⋅ c a ⋅ exp ⁡ ( − σ a ( t − a ) ) − σ a ∣ a b = c a ⋅ ( 1 − exp ⁡ ( − σ a ( b − a ) ) ) \begin{aligned} \boldsymbol{C}(a \rightarrow b) & =\int_a^b \mathcal{T}(a \rightarrow t) \cdot \sigma(t) \cdot \mathbf{c}(t) d t \\ & =\sigma_a \cdot \mathbf{c}_a \int_a^b \mathcal{T}(a \rightarrow t) d t \\ & =\sigma_a \cdot \mathbf{c}_a \int_a^b \exp \left(-\int_a^t \sigma(u) d u\right) d t \\ & =\sigma_a \cdot \mathbf{c}_a \int_a^b \exp \left(-\left.\sigma_a u\right|_a ^t\right) d t \\ & =\sigma_a \cdot \mathbf{c}_a \int_a^b \exp \left(-\sigma_a(t-a)\right) d t \\ & =\left.\sigma_a \cdot \mathbf{c}_a \cdot \frac{\exp \left(-\sigma_a(t-a)\right)}{-\sigma_a}\right|_a ^b \\ & =\mathbf{c}_a \cdot\left(1-\exp \left(-\sigma_a(b-a)\right)\right)\end{aligned} C(ab)=abT(at)σ(t)c(t)dt=σacaabT(at)dt=σacaabexp(atσ(u)du)dt=σacaabexp(σauat)dt=σacaabexp(σa(ta))dt=σacaσaexp(σa(ta)) ab=ca(1exp(σa(ba)))

T ( a → c ) = = exp ⁡ ( − [ ∫ a b σ ( t ) d t + ∫ b c σ ( t ) d t ] ) = exp ⁡ ( − ∫ a b σ ( t ) d t ) exp ⁡ ( − ∫ b c σ ( t ) d t ) = T ( a → b ) ⋅ T ( b → c ) \begin{aligned} \mathcal{T}(a \rightarrow c)= & =\exp \left(-\left[\int_a^b \sigma(t) d t+\int_b^c \sigma(t) d t\right]\right) \\ & =\exp \left(-\int_a^b \sigma(t) d t\right) \exp \left(-\int_b^c \sigma(t) d t\right) \\ & =\mathcal{T}(a \rightarrow b) \cdot \mathcal{T}(b \rightarrow c)\end{aligned} T(ac)==exp([abσ(t)dt+bcσ(t)dt])=exp(abσ(t)dt)exp(bcσ(t)dt)=T(ab)T(bc)

T n = T ( t n ) = T ( 0 → t n ) = exp ⁡ ( − ∫ 0 t n σ ( t ) d t ) = exp ⁡ ( ∑ k = 1 n − 1 − σ k δ k ) \mathcal{T}_n=\mathcal{T}\left(t_n\right)=\mathcal{T}\left(0 \rightarrow t_n\right)=\exp \left(-\int_0^{t_n} \sigma(t) d t\right)=\exp \left(\sum_{k=1}^{n-1}-\sigma_k \delta_k\right) Tn=T(tn)=T(0tn)=exp(0tnσ(t)dt)=exp(k=1n1σkδk)

C ( t N + 1 ) = ∑ n = 1 N ∫ t n t n + 1 T ( t ) ⋅ σ n ⋅ c n d t = ∑ n = 1 N ∫ t n t n + 1 T ( 0 → t n ) ⋅ T ( t n → t ) ⋅ σ n ⋅ c n d t = ∑ n = 1 N T ( 0 → t n ) ∫ t n t n + 1 T ( t n → t ) ⋅ σ n ⋅ c n d t = ∑ n = 1 N T ( 0 → t n ) ⋅ ( 1 − exp ⁡ ( − σ n ( t n + 1 − t n ) ) ) ⋅ c n \begin{aligned} \boldsymbol{C}\left(t_{N+1}\right) & =\sum_{n=1}^N \int_{t_n}^{t_{n+1}} \mathcal{T}(t) \cdot \sigma_n \cdot \mathbf{c}_n d t \\ & =\sum_{n=1}^N \int_{t_n}^{t_{n+1}} \mathcal{T}\left(0 \rightarrow t_n\right) \cdot \mathcal{T}\left(t_n \rightarrow t\right) \cdot \sigma_n \cdot \mathbf{c}_n d t \\ & =\sum_{n=1}^N \mathcal{T}\left(0 \rightarrow t_n\right) \int_{t_n}^{t_{n+1}} \mathcal{T}\left(t_n \rightarrow t\right) \cdot \sigma_n \cdot \mathbf{c}_n d t \\ & =\sum_{n=1}^N \mathcal{T}\left(0 \rightarrow t_n\right) \cdot\left(1-\exp \left(-\sigma_n\left(t_{n+1}-t_n\right)\right)\right) \cdot \mathbf{c}_n\end{aligned} C(tN+1)=n=1Ntntn+1T(t)σncndt=n=1Ntntn+1T(0tn)T(tnt)σncndt=n=1NT(0tn)tntn+1T(tnt)σncndt=n=1NT(0tn)(1exp(σn(tn+1tn)))cn

T ( 0 → t n ) ⋅ ( 1 − exp ⁡ ( − σ n ( t n + 1 − t n ) ) ) \mathcal{T}\left(0 \rightarrow t_n\right) \cdot\left(1-\exp \left(-\sigma_n\left(t_{n+1}-t_n\right)\right)\right) T(0tn)(1exp(σn(tn+1tn)))表示光线正好在 t N + 1 t_{N+1} tN+1位置的颜色的权重(**透射率*该点的颜色吸收率=该点颜色的贡献率,对应代码中的weights,代码中的 α \alpha α指代 1 − e x p ( − σ ∗ δ ) ∗ ∗ 1-exp(-\sigma*\delta)** 1exp(σδ)

C ( t N + 1 ) = ∑ n = 1 N T n ⋅ ( 1 − exp ⁡ ( − σ n δ n ) ) ⋅ c n , where T n = exp ⁡ ( ∑ k = 1 n − 1 − σ k δ k ) \boldsymbol{C}\left(t_{N+1}\right)=\sum_{n=1}^N \mathcal{T}_n \cdot\left(1-\exp \left(-\sigma_n \delta_n\right)\right) \cdot \mathbf{c}_n, \quad \\ \text{where} \quad \mathcal{T}_n=\exp \left(\sum_{k=1}^{n-1}-\sigma_k \delta_k\right) C(tN+1)=n=1NTn(1exp(σnδn))cn,whereTn=exp(k=1n1σkδk)

部分代码解读

相机变换(重要!)
  • 关于nerf相机方向的解读

  • 关于llff格式数据使用的NDC空间解读
    简单来说就是针对不同种类的数据在不同的空间进行计算,如360度合成数据lego(直接从相机坐标系变换到世界坐标系下)或者无界数据llff(NDC空间能将近远景范围限制在0-1之间)

Mip-Nerf

To do

Instant-NGP

To do

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1301349.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

字节跳动ZNS SSD应用案例分析

字节给出未来数据中心的发展趋势,包括计算、网络、存储三大组件。 字节目前遇到云存储的痛点主要包括:性能、成本、稳定性、定制化。性能方面,SSD的垃圾回收在传统SSD并不可控。成本方面,传统SSD需要预留一定的OP预留空间。稳定性…

【Marp】基于Markdown-Marp快速制作PPT

【Marp】基于Markdown-Marp快速制作PPT 文章目录 【Marp】基于Markdown-Marp快速制作PPT零、参考资料一、Marp基本语法(创建分页,排版图片,更换主题,Marp扩展指令修改样式)1、创建新的PPT页面2、插入图片 & 排版图…

Python学习笔记-类

1 定义类 类是函数的集合,class来定义类 pass并没有实际含义,只是为了代码能执行通过,不报错而已,相当于在代码种占一个位置,后续完善 类是对象的加工厂 2.创建对象 carCar()即是创建对象的过程 3、类的成员 3.1 实例…

【CiteSpace】引文可视化分析软件CiteSpace下载与安装

CiteSpace 译“引文空间”,是一款着眼于分析科学分析中蕴含的潜在知识,是在科学计量学、数据可视化背景下逐渐发展起来的引文可视化分析软件。由于是通过可视化的手段来呈现科学知识的结构、规律和分布情况,因此也将通过此类方法分析得到的可…

Unity中C#如何访问并修改Shader材质

文章目录 前言一、我们用点击按钮来改变Shader传入的颜色值1、在渲染GUI时,绘制一个按钮2、我们使用一个公共的成员变量存储需要进行修改的游戏对象3、最后给绘制的按钮点击增加逻辑即可 二、测试使用的代码1、Shader代码:2、C#脚本 前言 我们写好Shade…

MFC CLXHHandleEngine动态库-自定义设置对话框使用

实现的效果如下所示: void CSampleDlg::OnBnClickedButton2() { // TODO: 在此添加控件通知处理程序代码 CSgxMemDialog dlg(180, 100); dlg.SetEnable(true); dlg.SetWindowTitle(_T("自定义对话框")); dlg.AddStatic(1000, //控件资源…

vue构建项目

vue构建项目 全局安装脚手架 npm install -g vue/cli vue -V(版本号查看) 官方介绍:Installation | Vue CLI 一、vue可视化创建项目 vue 可视工具 vue ui 新建项目(可视化) 功能选择 配置 二、VSCode 命令行创建…

D28|买卖股票的最佳时机+跳跃游戏

122.买卖股票的最佳时机 II 初始思路: 这道题解题的时候比较像在找规律,发现只要计算这个过程中的两数之差然后相加即可。 题解复盘: 可以更加清晰的发现如何从题意中获得贪心的思路。 如何贪心:局部最优:收集每天的…

Redis高效恢复策略:内存快照与AOF

第1章:Redis宕机恢复的重要性和挑战 大家好,我是小黑。今天咱们来聊聊Redis宕机后的恢复策略。想象一下,你的网站突然宕机了,所有的数据都飘了,这种情况下,快速恢复数据就显得尤为重要。Redis作为一个高性…

neuq-acm预备队训练week 8 P1144 最短路计数

题目描述 给出一个 N 个顶点 M条边的无向无权图,顶点编号为 1∼N。问从顶点 1 开始,到其他每个点的最短路有几条。 题目限制 输入格式 第一行包含 22 个正整数 N,M,为图的顶点数与边数。 接下来 M 行,每行 2个正整数 x,y&…

江科大 STM32入门教程 P14 定时中断和定时器外部时钟

1 通用定时器中断的初始化(Time2) 1.1 开启RCC的TimxCLK时钟, 由于Time2是由APB1总线的外设控制的 RccAPB1PeriphClockCmd(RCC_APB1PeriPh_TIM2,ENABLE);//使能APB1总线1.2 选择时基单元时钟 选择时基单元内部时钟 TIM_InteralClockConfig(IIM2);//内…

谷歌笔记应用Notebook LM,添加Gemini Pro模型并扩大应用范围;Fine-Tuning预训练模型

🦉 AI新闻 🚀 谷歌更新AI笔记应用Notebook LM,添加Gemini Pro模型并扩大应用范围 摘要:谷歌在今年5月推出的AI笔记应用Notebook LM进行了更新,主要添加了最新的Gemini Pro模型,并扩大了应用使用范围。Not…

【K8S in Action】服务:让客户端发现pod 并与之通信(1)

服务是一种为一组功能相同的 pod 提供单一不变的接入点的资源。当服务存在时,它的 IP 地址和端口不会改变。 客户端通过 IP 地址和端口号建立连接, 这些连接会被路由到提供该服务的任意一个 pod 上。 pod 是短暂,会删除增加,调度…

ffmpeg6.0之ffprobe.c源码分析二-核心功能源码分析

本篇我们继续分析: 1、ffprobe -show_packets 参数的处理流程;2、ffprobe -show_frames 参数的处理流程;3、ffprobe -show_streams 参数的处理流程;4、ffprobe -show_format 参数的处理流程; 因为前面的文章已经回顾了这些命令的使用,以及作用。本文就不在赘述,以免篇幅…

4-SpringMVC

文章目录 项目源码地址回顾-MVC什么是MVC?MVC各部分组成 回顾-ServletMaven创建Web项目1、创建Maven父工程pom,并导入依赖2、用Maven新建一个Web Module3、代码:HelloServlet.java3、代码-hello.jsp3、代码-web.xml4、配置Tomcat5、浏览器测试…

通过生成模拟释放无限数据以实现机器人自动化学习

该工作推出RoboGen,这是一种生成机器人代理,可以通过生成模拟自动大规模学习各种机器人技能。 RoboGen 利用基础模型和生成模型的最新进展。该工作不直接使用或调整这些模型来产生策略或低级动作,而是提倡一种生成方案,该方案使用…

分子生成领域的stable diffusion - GEOLDM

一、关于stable diffusion 很多人都知道stable diffusion,stable diffusion的出现改变了机器生成领域,让AI技术第一次无比的接近正常人。大语言模型,AIGC概念于是兴起。基于stable diffusion 大家开发了lora, hyperwork等微调技术…

React-hooks

1 hooks使命 #逻辑组件复用 逻辑与UI组件分离 React 官方推荐在开发中将逻辑部分与视图部分结耦,便于定位问题和职责清晰 函数组件拥有state 在函数组件中如果要实现类似拥有state的状态,必须要将组件转成class组件 逻辑组件复用 社区一直致力于逻辑…

【数据结构高阶】红黑树

目录 一、红黑树的概念 二、红黑树的性质 2.1 红黑树与AVL树的比较 三、红黑树的实现 3.1 红黑树节点的定义 3.2 数据的插入 3.2.1 红黑树的调整思路 3.2.1.1 cur为红,f为红,g为黑,u存在且为红 3.2.1.2 cur为红,f为红&am…

Seata配置

参考教程 seata 分布式事务的环境搭建与使用 Seata 1.4.0 nacos配置和使用,超详细 Seata 1.4.2 的安装 Nacos的配置和使用 官网下载地址 本文以v1.4.1为例 1.数据库及表的创建 创建seata数据库,创建以下表(右键连接-》新建数据库seata-》…