基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(四)

news2024/12/17 8:36:22

目录

  • 前言
  • 引言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
  • 模块实现
    • 1. 数据预处理
    • 2. 模型构建
    • 3. 模型训练及保存
    • 4. 模型生成
  • 系统测试
    • 1. 训练准确率
    • 2. 测试效果
  • 相关其它博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

博主前段时间发布了一篇有关方言识别和分类模型训练的博客,在读者的反馈中发现许多小伙伴对方言的辨识和分类表现出浓厚兴趣。鉴于此,博主决定专门撰写一篇关于方言分类的博客,以满足读者对这一主题的进一步了解和探索的需求。上篇博客可参考:

《基于Python+WaveNet+CTC+Tensorflow智能语音识别与方言分类—深度学习算法应用(含全部工程源码)》

引言

本项目以科大讯飞提供的数据集为基础,通过特征筛选和提取的过程,选用WaveNet模型进行训练。旨在通过语音的梅尔频率倒谱系数(MFCC)特征,建立方言和相应类别之间的映射关系,解决方言分类问题。

首先,项目从科大讯飞提供的数据集中进行了特征筛选和提取。包括对语音信号的分析,提取出最能代表语音特征的MFCC,为模型训练提供有力支持。

其次,选择了WaveNet模型进行训练。WaveNet模型是一种序列生成器,用于语音建模,在语音合成的声学建模中,可以直接学习采样值序列的映射,通过先前的信号序列预测下一个时刻点值的深度神经网络模型,具有自回归的特点。

在训练过程中,利用语音的MFCC特征,建立了方言和相应类别之间的映射关系。这样,模型能够识别和分类输入语音的方言,并将其划分到相应的类别中。

最终,通过这个项目,实现了方言分类问题的解决方案。这对于语音识别、语音助手等领域具有实际应用的潜力,也有助于保护和传承各地区的语言文化。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述

运行环境

本部分包括Python环境、TensorFlow环境、JupyterNotebook环境、PyCharm环境。

详见博客。

模块实现

本项目包括4个模块:数据预处理、模型构建、模型训练及保存、模型生成。下面分别给出各模块的功能介绍及相关代码。

1. 数据预处理

本部分包括数据介绍、数据测试和数据处理。

详见博客。

2. 模型构建

数据加载进模型之后,需要定义模型结构并优化损失函数。

详见博客。

3. 模型训练及保存

本部分包括模型训练、模型保存和映射保存。

详见博客。

4. 模型生成

将训练好的.h5模型文件放入总目录下:信息系统设计方言种类识别/fangyan.h5

相关代码如下:

#打开映射
with open('resources.pkl', 'rb') as fr:
    [class2id, id2class, mfcc_mean, mfcc_std] = pickle.load(fr)
model = load_model('fangyan.h5')
#glob()提取路径参数
paths = glob.glob('data/*/dev/*/*/*.pcm')

将保存的方言和种类之间映射关系.pkl文件放到总文件目录下:信息系统设计/方言种类识别/resources.pkl。相关代码如下:

#打开保存的方言和种类之间的映射
with open('resources.pkl', 'rb') as fr:
    [class2id, id2class, mfcc_mean, mfcc_std] = pickle.load(fr)

在单机上加载训练好的模型,随机选择一条语音进行分类。新建测试主运行文件main.py,加载库之后,调用生成的模型文件获得预测结果。

相关代码如下:

#glob()提取路径参数
paths = glob.glob('data/*/dev/*/*/*.pcm')
#通过random模块随机提取一条语音数据
path = np.random.choice(paths, 1)[0]
label = path.split('/')[1]
print(label, path)
#本部分的相关代码
# -*- coding:utf-8 -*-
import numpy as np
from keras.models import load_model
from keras.preprocessing.sequence import pad_sequences
import librosa
from python_speech_features import mfcc
import pickle
import wave
import glob
#打开映射
with open('resources.pkl', 'rb') as fr:
    [class2id, id2class, mfcc_mean, mfcc_std] = pickle.load(fr)
model = load_model('fangyan.h5')
#glob()提取路径参数
paths = glob.glob('data/*/dev/*/*/*.pcm')
#通过random模块随机提取一条语音数据
path = np.random.choice(paths, 1)[0]
label = path.split('/')[1]
print(label, path)
#语音分片处理
mfcc_dim = 13
sr = 16000
min_length = 1 * sr
slice_length = 3 * sr
#提取语音信号的参数
def load_and_trim(path, sr=16000):
    audio = np.memmap(path, dtype='h', mode='r')
    audio = audio[2000:-2000]
    audio = audio.astype(np.float32)
    energy = librosa.feature.rmse(audio)
    frames = np.nonzero(energy >= np.max(energy) / 5)
    indices = librosa.core.frames_to_samples(frames)[1]
    audio = audio[indices[0]:indices[-1]] if indices.size else audio[0:0]
    slices = []
    for i in range(0, audio.shape[0], slice_length):
        s = audio[i: i + slice_length]
        slices.append(s)
        return audio, slices
#提取MFCC特征进行测试
audio, slices = load_and_trim(path)
X_data = [mfcc(s, sr, numcep=mfcc_dim) for s in slices]
X_data = [(x - mfcc_mean) / (mfcc_std + 1e-14) for x in X_data]
maxlen = np.max([x.shape[0] for x in X_data])
X_data = pad_sequences(X_data, maxlen, 'float32', padding='post', value=0.0)
print(X_data.shape)
#预测方言种类并输出
prob = model.predict(X_data)
prob = np.mean(prob, axis=0)
pred = np.argmax(prob)
prob = prob[pred]
pred = id2class[pred]
print('True:', label)
print('Pred:', pred, 'Confidence:', prob)

系统测试

本部分包括训练准确率及测试效果。

1. 训练准确率

绘制损失函数曲线和准确率曲线,经过10轮训练后,准确率将近100%,验证集准确率在89%左右。相关代码如下:

train_loss = history.history['loss']
valid_loss = history.history['val_loss']
plt.plot(train_loss,label='训练集')
plt.plot(valid_loss,label='验证集')
plt.legend(loc='upperright')
plt.xlabel('迭代次数')
plt.ylabel('损失')
plt.show()
#训练损失
#验证损失
#绘图
train acc = history.history['acc']
valid_acc = history.history['val_acc']
plt.plot(train_acc,label='训练集')
plt.plot(valid acc,label='验证集')
plt.legend(loc='upper right')
plt.xlabel('迭代次数')
plt.ylabel('准确率')
plt.show()

随着训练次数的增多,模型在训练数据、测试数据上的损失和准确率逐渐收敛,最终趋于稳定,如图3和图4所示。

在这里插入图片描述

图3 损失函数曲线

在这里插入图片描述

图4 准确率曲线

2. 测试效果

在本地服务器端进行测试,使用PyCharm调用保存的模型和映射。设置PyCharm运行环境,找到本地Python环境并导入,如图所示。

在这里插入图片描述

从本地随机抽取一段语音进行测试,相关代码如下:

#glob()提取路径参数
paths = glob.glob('data/*/dev/*/*/* / .pcm')
#通过 random模块随机提取一条语音数据
path = np.random.choice(paths, 1)[0]
label=path.split('/')[1]
print(label,path)
paths=glob.glob('D:/课堂导读/信息系统设计/方言种类分类/data/*/dev/*/*.pcm')
#预测方言种类并输出
prob=model.predict(X_data)
prob = np.mean(prob,axis=0)
pred = np.argmax(prob)
prob = prob[pred]
pred = id2class[pred]
print('True:',label)
print('Pred:', pred, 'Confidence:', prob)

在PyCharm上编辑运行,得到的分类结果与语音片段一致,如图所示。

在这里插入图片描述

相关其它博客

基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(一)

基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(二)

基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(三)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1299240.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MFC CBCGPPropertySheet使用说明

CBCGPPropertySheet效果类似新建向导,部分效果如下: 总共需要设置的界面效果有以下几种,具体可以看看效果 PropSheetLook_Tabs, PropSheetLook_OutlookBar, PropSheetLook_Tree, PropSheetLook_OneNoteTabs, PropSheetLook_…

DIP——添加运动模糊与滤波

1.运动模糊 为了模拟图像退化的过程,在这里创建了一个用于模拟运动模糊的点扩散函数,具体模糊的方向取决于输入的motion_angle。如果运动方向接近水平,则模糊效果近似水平,如果运动方向接近垂直,则模糊效果近似垂直。具…

风力发电对讲 IP语音对讲终端IP安防一键呼叫对讲 医院对讲终端SV-6005网络音频终端

风力发电对讲 IP语音对讲终端IP安防一键呼叫对讲 医院对讲终端SV-6005网络音频终端 目 录 1、产品规格 2、接口使用 2.1、侧面接口功能 2.2、背面接口功能 2.3、面板接口功能 3、功能使用 1、产品规格 输入电源: 12V~24V的直流电源 网络接口&am…

【Go实现】实践GoF的23种设计模式:适配器模式

上一篇:【Go实现】实践GoF的23种设计模式:备忘录模式 简单的分布式应用系统(示例代码工程):https://github.com/ruanrunxue/Practice-Design-Pattern–Go-Implementation 简介 适配器模式(Adapter&#xf…

《形式语言与自动机理论(第4版)》笔记(三)

文章目录 [toc]前导《形式语言与自动机理论(第4版)》笔记(一)《形式语言与自动机理论(第4版)》笔记(二) 第四章:正则表达式4.1|启示4.2|正则表达式的形式定义正则表达式性…

软件设计师——计算机组成原理(二)

📑前言 本文主要是【计算机组成原理】——软件设计师——计算机组成原理的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 …

iOS分段控件UISegmentedControl使用

在故事板中添加UISegmentedControl 具体添加步聚如下: 选择Xcode的View菜单下的Show Library (或者Shift+Common+L) 打开控件库如下 在控件库中输入seg搜索控件,在出现Segmented Control后,将其拖到View Controller Scene中 到这里,添加分段控件UI已完成, 接下来将控件与变量…

配置OSS后如何将服务器已有文件上传至OSS,推荐使用ossutil使用

1.下载安装ossutil sudo -v ; curl https://gosspublic.alicdn.com/ossutil/install.sh | sudo bash2.交互式配置生成配置文件 ossutil config 根据提示分别设置配置文件路径、设置工具的语言、Endpoint、AccessKey ID、AccessKey Secret和STSToken参数,STSToken留…

软件接口安全设计规范

《软件项目接口安全设计规范》 1.token授权机制 2.https传输加密 3.接口调用防滥用 4.日志审计里监控 5.开发测试环境隔离,脱敏处理 6.数据库运维监控审计

万界星空科技低代码平台:搭建MES系统的优势

低代码MES系统:制造业数字化转型的捷径 随着制造业的数字化转型,企业对生产管理系统的需求逐渐提高。传统的MES系统实施过程复杂、成本高昂,已经无法满足现代企业的快速发展需求。而低代码搭建MES系统的出现,为企业提供了一种高…

24、文件上传漏洞——Apache文件解析漏洞

文章目录 一、环境简介一、Apache与php三种结合方法二、Apache解析文件的方法三、Apache解析php的方法四、漏洞原理五、修复方法 一、环境简介 Apache文件解析漏洞与用户配置有密切关系。严格来说,属于用户配置问题,这里使用ubantu的docker来复现漏洞&am…

MySQL的锁机制

1.简介 MySQL的隔离性是由锁机制来保证的。锁是计算机协调多个进程或线程并发地访问某一资源你的机制。当多线程并发地访问某个数据时,尤其是在涉及金钱等安全敏感性数据的时候,需要保证数据在任意时刻最多只有一个线程可以对其进行修改,从而…

springboot mybatis手动事务

创建springboot项目 搭建最简单的SpringBoot项目-CSDN博客 引入mybatis和数据库依赖 <dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><…

MacOS环境配置一系列问题的汇总,方便以后自己查看

环境配置一系列问题的汇总&#xff0c;方便以后自己查看 man brew报错“No manual entry for brew” 解决方法记录&#xff1a; 解决问题之前尝试的方法&#xff1a; Linking manuals from Homebrew1 https://apple.stackexchange.com/questions/111061/linking-manuals-f…

虚拟机安装 hyper—v 沙盒

一、下载系统镜像 1、确认电脑内存在8G及以上并提前准备完整的系统镜像 安装Hyper-V并重启电脑后打开程序选择虚拟机 选择安装位置并设置保留第一代的虚拟参数即可开始分配内存&#xff0c;根据自己的需求进行设置 右键虚拟机启动并开始运行&#xff0c;进行镜像系统的安装便完…

力扣 4. 寻找两个正序数组的中位数

题目 给定两个大小分别为 m 和 n 的正序&#xff08;从小到大&#xff09;数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。 算法的时间复杂度应该为 O(log (mn)) 。 My class Solution {public double findMedianSortedArrays(int[] nums1, int[] nums2) {i…

科学计算入门

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…

04-详解Eureka注册中心的作用,具体配置,服务注册和服务发现

Eureka注册中心的作用 Eureka架构 远程调用的两个问题 服务的ip地址和端口号写死: 生产环境中服务的地址可能会随时发生变化,如果写死每次都需要重新修改代码多实例问题: 在高并发的情况下一个服务可以有多个实例形成一个集群,此时如果采用硬编码的方式只能访问服务的一个实…

【Java+MySQL】前后端连接小白教程

目录 &#x1f36d;【IntelliJ IDEA】操作 &#x1f36d;1. 连接MySQL数据库 &#x1f308;1.1 错误解决 &#x1f36d;2. 操作MySQL数据库 &#x1f308;2.1 双击查看表数据 &#x1f308;2.2 编写SQL脚本 &#x1f36d;【IntelliJ IDEA】 IntelliJ IDEA是由JetBrains公司…

[后端卷前端2]

绑定class 为什么需要样式绑定呢? 因为有些样式我们希望能够动态展示 看下面的例子: <template><div><p :class"{active:modifyFlag}">class样式绑定</p></div> </template><script>export default {name: "goo…