力扣 4. 寻找两个正序数组的中位数

news2024/12/17 10:32:58

题目

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n)) 。

在这里插入图片描述

My

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
         int len = nums1.length + nums2.length;
        ArrayList<Integer> list = new ArrayList<Integer>();
        int j = 0;
        double result;
        for (int i = 0; i < nums1.length; i++) {
            while (j < nums2.length && nums2[j] < nums1[i]) {
                list.add(nums2[j]);
                j++;
            }
            list.add(nums1[i]);
        }
        for (int k =j; k < nums2.length; k++) {
            list.add(nums2[k ]);
        }
        if (list.size()%2 >0){
            result = list.get(list.size()/2);
        }else {
            result = (double) (list.get(list.size()/2)+list.get(list.size()/2-1)) / 2;
        }
        return result;
    }
}

击败33.3%! 哈哈哈哈

另一个

归并算法 和我的思想一样 (不过这代码写的就是优美)

public double findMedianSortedArrays2(int[] nums1, int[] nums2) {
        int[] newNum = new int[nums1.length + nums2.length]; //新有序数组
        int m = 0, i = 0, j = 0;
        while (i < nums1.length && j < nums2.length) {
            newNum[m++] = nums1[i] < nums2[j] ? nums1[i++] : nums2[j++];
        }
        while (i < nums1.length)
            newNum[m++] = nums1[i++];
        while (j < nums2.length)
            newNum[m++] = nums2[j++];
        for (int x : newNum) {
            System.out.println(x);
        }
        double result;
        if (newNum.length%2 >0){
            result = newNum[newNum.length/2];
        }else {
            result = (double) (newNum[newNum.length/2]+newNum[newNum.length/2-1]) / 2 ;
        }
        return result;
    }

解法

方法一:二分查找

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int length1 = nums1.length, length2 = nums2.length;
        int totalLength = length1 + length2;
        if (totalLength % 2 == 1) {
            int midIndex = totalLength / 2;
            double median = getKthElement(nums1, nums2, midIndex + 1);
            return median;
        } else {
            int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2;
            double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0;
            return median;
        }
    }

    public int getKthElement(int[] nums1, int[] nums2, int k) {
        /* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
         * 这里的 "/" 表示整除
         * nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
         * nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
         * 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
         * 这样 pivot 本身最大也只能是第 k-1 小的元素
         * 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
         * 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
         * 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
         */

        int length1 = nums1.length, length2 = nums2.length;
        int index1 = 0, index2 = 0;
        int kthElement = 0;

        while (true) {
            // 边界情况
            if (index1 == length1) {
                return nums2[index2 + k - 1];
            }
            if (index2 == length2) {
                return nums1[index1 + k - 1];
            }
            if (k == 1) {
                return Math.min(nums1[index1], nums2[index2]);
            }
            
            // 正常情况
            int half = k / 2;
            int newIndex1 = Math.min(index1 + half, length1) - 1;
            int newIndex2 = Math.min(index2 + half, length2) - 1;
            int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2];
            if (pivot1 <= pivot2) {
                k -= (newIndex1 - index1 + 1);
                index1 = newIndex1 + 1;
            } else {
                k -= (newIndex2 - index2 + 1);
                index2 = newIndex2 + 1;
            }
        }
    }
}

作者:力扣官方题解
链接:https://leetcode.cn/problems/median-of-two-sorted-arrays/
来源:力扣(LeetCode

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1299212.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

科学计算入门

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…

04-详解Eureka注册中心的作用,具体配置,服务注册和服务发现

Eureka注册中心的作用 Eureka架构 远程调用的两个问题 服务的ip地址和端口号写死: 生产环境中服务的地址可能会随时发生变化,如果写死每次都需要重新修改代码多实例问题: 在高并发的情况下一个服务可以有多个实例形成一个集群,此时如果采用硬编码的方式只能访问服务的一个实…

【Java+MySQL】前后端连接小白教程

目录 &#x1f36d;【IntelliJ IDEA】操作 &#x1f36d;1. 连接MySQL数据库 &#x1f308;1.1 错误解决 &#x1f36d;2. 操作MySQL数据库 &#x1f308;2.1 双击查看表数据 &#x1f308;2.2 编写SQL脚本 &#x1f36d;【IntelliJ IDEA】 IntelliJ IDEA是由JetBrains公司…

[后端卷前端2]

绑定class 为什么需要样式绑定呢? 因为有些样式我们希望能够动态展示 看下面的例子: <template><div><p :class"{active:modifyFlag}">class样式绑定</p></div> </template><script>export default {name: "goo…

ffprobe命令行超详细使用详解

本文做为阅读ffprobe源码的前课程。为了之后方便理解ffprobe的源码,咱们先从ffprobe的命令学习。 课程内容如下: 文章目录 一、ffprobe主要选项说明1、每次使用ffprobe都打印编译环境的信息,太烦了2、如何分析媒体文件中存在的流信息3、如何指定查询某路流信息4、查看输入文…

蒙特霍尔问题(选择三扇门后的车与羊)及其贝叶斯定理数学解释

1. 蒙特霍尔问题 有一个美国电视游戏节目叫做“Let’s Make a Deal”&#xff0c;游戏中参赛者将面对3扇关闭的门&#xff0c;其中一扇门背后有一辆汽车&#xff0c;另外两扇门后是山羊&#xff0c;参赛者如果能猜中哪一扇门后是汽车&#xff0c;就可以得到它。 通常&#xf…

飞天使-linux操作的一些技巧与知识点2

TCP 的三次握手 第一次&#xff0c;客户端与服务端建立链接&#xff0c;需要发送请求连接的消息 第二次&#xff0c;服务端接口到数据后&#xff0c;返回一个确认的操作*&#xff08;至此客户端和服务端链路建立成功&#xff09; 第三次&#xff0c;服务端还需要发送要与客户端…

【小白专用】Apache2.4+PHP8.3+MYSQL的配置

1.下载PHP和Apache 1、PHP下载 PHP For Windows: Binaries and sources Releases 注意&#xff1a; 1.使用Apache作为服务器的话&#xff0c;一定要下载Thread Safe的&#xff0c;否则没有php8apache2_4.dll这个文件&#xff0c; 如果使用IIS的请下载 NON Tread safe的 2.如果…

【报错栏】找不到依赖项

问题描述&#xff1a; 找不到依赖项 org.springframework.boot:spring-boot-starter-amqp:2.7.14 解决办法&#xff1a; 最终我的问题解决

激光打标机在智能手表上的应用:科技与时尚的完美结合

随着科技的飞速发展&#xff0c;智能手表已经成为我们日常生活中不可或缺的智能设备。而在智能手表制造中&#xff0c;激光打标机扮演着至关重要的角色。本文将详细介绍激光打标机在智能手表制造中的应用&#xff0c;以及其带来的优势和影响。 ​ 一、激光打标机在智能手表制…

C语言数组输出平行四边形问题问题

目录 1问题输出以下图形: 2解题思路&#xff1a; 3代码如下&#xff1a; 4运行代码&#xff1a; 注意图形问题就是找到行和列的规律&#xff0c;即可输出&#xff0c;比如我也可以输出反方向的平行四边行&#xff0c;代码如下&#xff1a; 运行结果&#xff1a;​编辑 5总…

Proteus仿真--基于NM24C08的EEPROM仿真设计

本文介绍基于NM24C08的EEPROM仿真设计&#xff08;完整仿真源文件及代码见文末链接&#xff09; 其中NM24C08是标准的2线总线接口的串行EEPROM&#xff0c;开机画面在LCD12864上显示 仿真图如下 仿真运行视频 Proteus仿真--基于NM24C08的EEPROM仿真设计 附完整Proteus仿真资料…

LINUX-ROS集成安装MQTT库步骤注意事项

环境信息 roottitan-ubuntu1:/home/mogo/data/jp/paho.mqtt.cpp# lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 18.04.5 LTS Release: 18.04 Codename: bionic 步骤 安装doxygen sudo apt install doxygen 构…

基于ssm铁岭河医院医患管理系统论文

摘 要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐渐被人们所认识&#xff0c;科学化的管理&#xff0c;使信息存…

Diffie-Hellman密钥交换协议

DH介绍 Diffie-Hellman密钥协议算法是一种确保共享密钥安全穿越不安全网络的方法。 这个机制的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥&#xff0c;然后可以用这个密钥进行加密和解密。 但是注意&#xff0c;这个密钥交换协议 只能用于密钥的交换&#xff0c;而…

LeetCode 每日一题 Day 9 ||简单dp

70. 爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;2 解释&#xff1a;有两种方法可以爬到楼顶。 1 阶 1 阶2 阶 示例 2&am…

Tomcat管理功能使用

前言 Tomcat管理功能用于对Tomcat自身以及部署在Tomcat上的应用进行管理的web应用。在默认情况下是处于禁用状态的。如果需要开启这个功能&#xff0c;需要配置管理用户&#xff0c;即配置tomcat-users.xml文件。 &#xff01;&#xff01;&#xff01;注意&#xff1a;测试功…

PPT添加备注

0 Preface/Foreward 1 添加备注方法 添加备注方法&#xff1a;在page的最下端&#xff0c;有一个空白文本框&#xff0c;该文本框用来添加备注。

机器学习 | Python贝叶斯超参数优化模型答疑

机器学习 | Python贝叶斯超参数优化模型答疑 目录 机器学习 | Python贝叶斯超参数优化模型答疑问题汇总问题1答疑问题2答疑问题3答疑问题汇总 问题1:想问一下贝叶斯优化是什么? 问题2:为什么使用贝叶斯优化? 问题3:如何实现? 问题1答疑 超参数优化在大多数机器学习流水线…

自然语言处理第2天:自然语言处理词语编码

​ ☁️主页 Nowl &#x1f525;专栏 《自然语言处理》 &#x1f4d1;君子坐而论道&#xff0c;少年起而行之 ​​ 文章目录 一、自然语言处理介绍二、常见的词编码方式1.one-hot介绍缺点 2.词嵌入介绍说明 三、代码演示四、结语 一、自然语言处理介绍 自然语言处理&#xf…