Kubernetes(K8s)数据存储-09

news2024/10/7 14:25:33

数据存储

在前面已经提到,容器的生命周期可能很短,会被频繁地创建和销毁。那么容器在销毁时,保存在容器中的数据也会被清除。这种结果对用户来说,在某些情况下是不乐意看到的。为了持久化保存容器的数据,kubernetes引入了Volume的概念。

Volume是Pod中能够被多个容器访问的共享目录,它被定义在Pod上,然后被一个Pod里的多个容器挂载到具体的文件目录下,kubernetes通过Volume实现同一个Pod中不同容器之间的数据共享以及数据的持久化存储。Volume的生命容器不与Pod中单个容器的生命周期相关,当容器终止或者重启时,Volume中的数据也不会丢失。

kubernetes的Volume支持多种类型,比较常见的有下面几个:

简单存储:EmptyDir、HostPath、NFS
高级存储:PV、PVC
配置存储:ConfigMap、Secret
基本存储
EmptyDir
EmptyDir是最基础的Volume类型,一个EmptyDir就是Host上的一个空目录。

EmptyDir是在Pod被分配到Node时创建的,它的初始内容为空,并且无须指定宿主机上对应的目录文件,因为kubernetes会自动分配一个目录,当Pod销毁时, EmptyDir中的数据也会被永久删除。 EmptyDir用途如下:

临时空间,例如用于某些应用程序运行时所需的临时目录,且无须永久保留
一个容器需要从另一个容器中获取数据的目录(多容器共享目录)
接下来,通过一个容器之间文件共享的案例来使用一下EmptyDir。

在一个Pod中准备两个容器nginx和busybox,然后声明一个Volume分别挂在到两个容器的目录中,然后nginx容器负责向Volume中写日志,busybox中通过命令将日志内容读到控制台。

img

创建一个volume-emptydir.yaml

apiVersion: v1
kind: Pod
metadata:
  name: volume-emptydir
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - containerPort: 80
    volumeMounts:  # 将logs-volume挂在到nginx容器中,对应的目录为 /var/log/nginx
    - name: logs-volume
      mountPath: /var/log/nginx
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","tail -f /logs/access.log"] # 初始命令,动态读取指定文件中内容
    volumeMounts:  # 将logs-volume 挂在到busybox容器中,对应的目录为 /logs
    - name: logs-volume
      mountPath: /logs
  volumes: # 声明volume, name为logs-volume,类型为emptyDir
  - name: logs-volume
    emptyDir: {}
#创建Pod
[root@k8s-master01 ~]# kubectl create -f volume-emptydir.yaml
pod/volume-emptydir created

#查看pod
[root@k8s-master01 ~]# kubectl get pods volume-emptydir -n dev -o wide
NAME                  READY   STATUS    RESTARTS   AGE      IP       NODE   ...... 
volume-emptydir       2/2     Running   0          97s   10.42.2.9   node1  ......

#通过podIp访问nginx
[root@k8s-master01 ~]# curl 10.42.2.9
......

#通过kubectl logs命令查看指定容器的标准输出
[root@k8s-master01 ~]# kubectl logs -f volume-emptydir -n dev -c busybox
10.42.1.0 - - [27/Jun/2021:15:08:54 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.29.0" "-"

HostPath
EmptyDir中数据不会被持久化,它会随着Pod的结束而销毁,如果想简单的将数据持久化到主机中,可以选择HostPath。

HostPath就是将Node主机中一个实际目录挂在到Pod中,以供容器使用,这样的设计就可以保证Pod销毁了,但是数据依据可以存在于Node主机上。

img

创建一个volume-hostpath.yaml:

apiVersion: v1
kind: Pod
metadata:
  name: volume-hostpath
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - containerPort: 80
    volumeMounts:
    - name: logs-volume
      mountPath: /var/log/nginx
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","tail -f /logs/access.log"]
    volumeMounts:
    - name: logs-volume
      mountPath: /logs
  volumes:
  - name: logs-volume
    hostPath: 
      path: /root/logs
      type: DirectoryOrCreate  # 目录存在就使用,不存在就先创建后使用

关于type的值的一点说明:
DirectoryOrCreate 目录存在就使用,不存在就先创建后使用
Directory 目录必须存在
FileOrCreate 文件存在就使用,不存在就先创建后使用
File 文件必须存在
Socket unix套接字必须存在
CharDevice 字符设备必须存在
BlockDevice 块设备必须存在

#创建Pod
[root@k8s-master01 ~]# kubectl create -f volume-hostpath.yaml
pod/volume-hostpath created

#查看Pod
[root@k8s-master01 ~]# kubectl get pods volume-hostpath -n dev -o wide
NAME                  READY   STATUS    RESTARTS   AGE   IP             NODE   ......
pod-volume-hostpath   2/2     Running   0          16s   10.42.2.10     node1  ......

#访问nginx
[root@k8s-master01 ~]# curl 10.42.2.10

[root@k8s-master01 ~]# kubectl logs -f volume-emptydir -n dev -c busybox

#接下来就可以去host的/root/logs目录下查看存储的文件了
###注意: 下面的操作需要到Pod所在的节点运行(案例中是node1)
[root@node1 ~]# ls /root/logs/
access.log  error.log

#同样的道理,如果在此目录下创建一个文件,到容器中也是可以看到的

NFS
HostPath可以解决数据持久化的问题,但是一旦Node节点故障了,Pod如果转移到了别的节点,又会出现问题了,此时需要准备单独的网络存储系统,比较常用的用NFS、CIFS。

NFS是一个网络文件存储系统,可以搭建一台NFS服务器,然后将Pod中的存储直接连接到NFS系统上,这样的话,无论Pod在节点上怎么转移,只要Node跟NFS的对接没问题,数据就可以成功访问。

img

1)首先要准备nfs的服务器,这里为了简单,直接是master节点做nfs服务器

#在nfs上安装nfs服务
[root@nfs ~]# yum install nfs-utils -y

#准备一个共享目录
[root@nfs ~]# mkdir /root/data/nfs -pv

#将共享目录以读写权限暴露给192.168.5.0/24网段中的所有主机
[root@nfs ~]# vim /etc/exports
[root@nfs ~]# more /etc/exports
/root/data/nfs     192.168.5.0/24(rw,no_root_squash)

#启动nfs服务
[root@nfs ~]# systemctl restart nfs

2)接下来,要在的每个node节点上都安装下nfs,这样的目的是为了node节点可以驱动nfs设备

#在node上安装nfs服务,注意不需要启动
[root@k8s-master01 ~]# yum install nfs-utils -y

3)接下来,就可以编写pod的配置文件了,创建volume-nfs.yaml

apiVersion: v1
kind: Pod
metadata:
  name: volume-nfs
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    ports:
    - containerPort: 80
    volumeMounts:
    - name: logs-volume
      mountPath: /var/log/nginx
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","tail -f /logs/access.log"] 
    volumeMounts:
    - name: logs-volume
      mountPath: /logs
  volumes:
  - name: logs-volume
    nfs:
      server: 192.168.5.6  #nfs服务器地址
      path: /root/data/nfs #共享文件路径

4)最后,运行下pod,观察结果

#创建pod
[root@k8s-master01 ~]# kubectl create -f volume-nfs.yaml
pod/volume-nfs created

#查看pod
[root@k8s-master01 ~]# kubectl get pods volume-nfs -n dev
NAME                  READY   STATUS    RESTARTS   AGE
volume-nfs        2/2     Running   0          2m9s

#查看nfs服务器上的共享目录,发现已经有文件了
[root@k8s-master01 ~]# ls /root/data/
access.log  error.log

高级存储

前面已经学习了使用NFS提供存储,此时就要求用户会搭建NFS系统,并且会在yaml配置nfs。由于kubernetes支持的存储系统有很多,要求客户全都掌握,显然不现实。为了能够屏蔽底层存储实现的细节,方便用户使用, kubernetes引入PV和PVC两种资源对象。

PV(Persistent Volume)是持久化卷的意思,是对底层的共享存储的一种抽象。一般情况下PV由kubernetes管理员进行创建和配置,它与底层具体的共享存储技术有关,并通过插件完成与共享存储的对接。

PVC(Persistent Volume Claim)是持久卷声明的意思,是用户对于存储需求的一种声明。换句话说,PVC其实就是用户向kubernetes系统发出的一种资源需求申请。

img

使用了PV和PVC之后,工作可以得到进一步的细分:

存储:存储工程师维护
PV: kubernetes管理员维护
PVC:kubernetes用户维护
PV
PV是存储资源的抽象,下面是资源清单文件:

apiVersion: v1  
kind: PersistentVolume
metadata:
  name: pv2
spec:
  nfs: # 存储类型,与底层真正存储对应
  capacity:  # 存储能力,目前只支持存储空间的设置
    storage: 2Gi
  accessModes:  # 访问模式
  storageClassName: # 存储类别
  persistentVolumeReclaimPolicy: # 回收策略

PV 的关键配置参数说明:

存储类型

底层实际存储的类型,kubernetes支持多种存储类型,每种存储类型的配置都有所差异

存储能力(capacity)

目前只支持存储空间的设置( storage=1Gi ),不过未来可能会加入IOPS、吞吐量等指标的配置

访问模式(accessModes)

用于描述用户应用对存储资源的访问权限,访问权限包括下面几种方式:

ReadWriteOnce(RWO):读写权限,但是只能被单个节点挂载
ReadOnlyMany(ROX): 只读权限,可以被多个节点挂载
ReadWriteMany(RWX):读写权限,可以被多个节点挂载
需要注意的是,底层不同的存储类型可能支持的访问模式不同

回收策略(persistentVolumeReclaimPolicy)

当PV不再被使用了之后,对其的处理方式。目前支持三种策略:

Retain (保留) 保留数据,需要管理员手工清理数据
Recycle(回收) 清除 PV 中的数据,效果相当于执行 rm -rf /thevolume/*
Delete (删除) 与 PV 相连的后端存储完成 volume 的删除操作,当然这常见于云服务商的存储服务
需要注意的是,底层不同的存储类型可能支持的回收策略不同

存储类别

PV可以通过storageClassName参数指定一个存储类别

具有特定类别的PV只能与请求了该类别的PVC进行绑定
未设定类别的PV则只能与不请求任何类别的PVC进行绑定
状态(status)

一个 PV 的生命周期中,可能会处于4中不同的阶段:

Available(可用): 表示可用状态,还未被任何 PVC 绑定
Bound(已绑定): 表示 PV 已经被 PVC 绑定
Released(已释放): 表示 PVC 被删除,但是资源还未被集群重新声明
Failed(失败): 表示该 PV 的自动回收失败
实验

使用NFS作为存储,来演示PV的使用,创建3个PV,对应NFS中的3个暴露的路径。

准备NFS环境

#创建目录
[root@nfs ~]# mkdir /root/data/{pv1,pv2,pv3} -pv

#暴露服务
[root@nfs ~]# more /etc/exports
/root/data/pv1     192.168.5.0/24(rw,no_root_squash)
/root/data/pv2     192.168.5.0/24(rw,no_root_squash)
/root/data/pv3     192.168.5.0/24(rw,no_root_squash)

#重启服务
[root@nfs ~]#  systemctl restart nfs

创建pv.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
  name:  pv1
spec:
  capacity: 
    storage: 1Gi
  accessModes:
  - ReadWriteMany
  persistentVolumeReclaimPolicy: Retain
  nfs:
    path: /root/data/pv1
    server: 192.168.5.6

---

apiVersion: v1
kind: PersistentVolume
metadata:
  name:  pv2
spec:
  capacity: 
    storage: 2Gi
  accessModes:
  - ReadWriteMany
  persistentVolumeReclaimPolicy: Retain
  nfs:
    path: /root/data/pv2
    server: 192.168.5.6
    
---

apiVersion: v1
kind: PersistentVolume
metadata:
  name:  pv3
spec:
  capacity: 
    storage: 3Gi
  accessModes:
  - ReadWriteMany
  persistentVolumeReclaimPolicy: Retain
  nfs:
    path: /root/data/pv3
    server: 192.168.5.6
#创建 pv
[root@k8s-master01 ~]# kubectl create -f pv.yaml
persistentvolume/pv1 created
persistentvolume/pv2 created
persistentvolume/pv3 created

#查看pv
[root@k8s-master01 ~]# kubectl get pv -o wide
NAME   CAPACITY   ACCESS MODES  RECLAIM POLICY  STATUS      AGE   VOLUMEMODE
pv1    1Gi        RWX            Retain        Available    10s   Filesystem
pv2    2Gi        RWX            Retain        Available    10s   Filesystem
pv3    3Gi        RWX            Retain        Available    9s    Filesystem

PVC
PVC是资源的申请,用来声明对存储空间、访问模式、存储类别需求信息。下面是资源清单文件:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pvc
  namespace: dev
spec:
  accessModes: # 访问模式
  selector: # 采用标签对PV选择
  storageClassName: # 存储类别
  resources: # 请求空间
    requests:
      storage: 5Gi

PVC 的关键配置参数说明:

访问模式(accessModes)
用于描述用户应用对存储资源的访问权限

选择条件(selector)

通过Label Selector的设置,可使PVC对于系统中己存在的PV进行筛选

存储类别(storageClassName)

PVC在定义时可以设定需要的后端存储的类别,只有设置了该class的pv才能被系统选出

资源请求(Resources )

描述对存储资源的请求

实验

创建pvc.yaml,申请pv

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pvc1
  namespace: dev
spec:
  accessModes: 
  - ReadWriteMany
  resources:
    requests:
      storage: 1Gi
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pvc2
  namespace: dev
spec:
  accessModes: 
  - ReadWriteMany
  resources:
    requests:
      storage: 1Gi
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pvc3
  namespace: dev
spec:
  accessModes: 
  - ReadWriteMany
  resources:
    requests:
      storage: 1Gi
#创建pvc
[root@k8s-master01 ~]# kubectl create -f pvc.yaml
persistentvolumeclaim/pvc1 created
persistentvolumeclaim/pvc2 created
persistentvolumeclaim/pvc3 created

#查看pvc
[root@k8s-master01 ~]# kubectl get pvc  -n dev -o wide
NAME   STATUS   VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS   AGE   VOLUMEMODE
pvc1   Bound    pv1      1Gi        RWX                           15s   Filesystem
pvc2   Bound    pv2      2Gi        RWX                           15s   Filesystem
pvc3   Bound    pv3      3Gi        RWX                           15s   Filesystem

#查看pv
[root@k8s-master01 ~]# kubectl get pv -o wide
NAME  CAPACITY ACCESS MODES  RECLAIM POLICY  STATUS    CLAIM       AGE     VOLUMEMODE
pv1    1Gi        RWx        Retain          Bound    dev/pvc1    3h37m    Filesystem
pv2    2Gi        RWX        Retain          Bound    dev/pvc2    3h37m    Filesystem
pv3    3Gi        RWX        Retain          Bound    dev/pvc3    3h37m    Filesystem   

创建pods.yaml, 使用pv

apiVersion: v1
kind: Pod
metadata:
  name: pod1
  namespace: dev
spec:
  containers:
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","while true;do echo pod1 >> /root/out.txt; sleep 10; done;"]
    volumeMounts:
    - name: volume
      mountPath: /root/
  volumes:
    - name: volume
      persistentVolumeClaim:
        claimName: pvc1
        readOnly: false
---
apiVersion: v1
kind: Pod
metadata:
  name: pod2
  namespace: dev
spec:
  containers:
  - name: busybox
    image: busybox:1.30
    command: ["/bin/sh","-c","while true;do echo pod2 >> /root/out.txt; sleep 10; done;"]
    volumeMounts:
    - name: volume
      mountPath: /root/
  volumes:
    - name: volume
      persistentVolumeClaim:
        claimName: pvc2
        readOnly: false
#创建pod
[root@k8s-master01 ~]# kubectl create -f pods.yaml
pod/pod1 created
pod/pod2 created

#查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev -o wide
NAME   READY   STATUS    RESTARTS   AGE   IP            NODE   
pod1   1/1     Running   0          14s   10.244.1.69   node1   
pod2   1/1     Running   0          14s   10.244.1.70   node1  

#查看pvc
[root@k8s-master01 ~]# kubectl get pvc -n dev -o wide
NAME   STATUS   VOLUME   CAPACITY   ACCESS MODES      AGE   VOLUMEMODE
pvc1   Bound    pv1      1Gi        RWX               94m   Filesystem
pvc2   Bound    pv2      2Gi        RWX               94m   Filesystem
pvc3   Bound    pv3      3Gi        RWX               94m   Filesystem

#查看pv
[root@k8s-master01 ~]# kubectl get pv -n dev -o wide
NAME   CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM       AGE     VOLUMEMODE
pv1    1Gi        RWX            Retain           Bound    dev/pvc1    5h11m   Filesystem
pv2    2Gi        RWX            Retain           Bound    dev/pvc2    5h11m   Filesystem
pv3    3Gi        RWX            Retain           Bound    dev/pvc3    5h11m   Filesystem

#查看nfs中的文件存储
[root@nfs ~]# more /root/data/pv1/out.txt
node1
node1
[root@nfs ~]# more /root/data/pv2/out.txt
node2
node2

生命周期

PVC和PV是一一对应的,PV和PVC之间的相互作用遵循以下生命周期:

资源供应:管理员手动创建底层存储和PV

资源绑定:用户创建PVC,kubernetes负责根据PVC的声明去寻找PV,并绑定

在用户定义好PVC之后,系统将根据PVC对存储资源的请求在已存在的PV中选择一个满足条件的

一旦找到,就将该PV与用户定义的PVC进行绑定,用户的应用就可以使用这个PVC了
如果找不到,PVC则会无限期处于Pending状态,直到等到系统管理员创建了一个符合其要求的PV
PV一旦绑定到某个PVC上,就会被这个PVC独占,不能再与其他PVC进行绑定了

资源使用:用户可在pod中像volume一样使用pvc

Pod使用Volume的定义,将PVC挂载到容器内的某个路径进行使用。

资源释放:用户删除pvc来释放pv

当存储资源使用完毕后,用户可以删除PVC,与该PVC绑定的PV将会被标记为“已释放”,但还不能立刻与其他PVC进行绑定。通过之前PVC写入的数据可能还被留在存储设备上,只有在清除之后该PV才能再次使用。

资源回收:kubernetes根据pv设置的回收策略进行资源的回收

对于PV,管理员可以设定回收策略,用于设置与之绑定的PVC释放资源之后如何处理遗留数据的问题。只有PV的存储空间完成回收,才能供新的PVC绑定和使用

img

配置存储

ConfigMap
ConfigMap是一种比较特殊的存储卷,它的主要作用是用来存储配置信息的。

创建configmap.yaml,内容如下:

apiVersion: v1
kind: ConfigMap
metadata:
  name: configmap
  namespace: dev
data:
  info: |
    username:admin
    password:123456

接下来,使用此配置文件创建configmap

#创建configmap
[root@k8s-master01 ~]# kubectl create -f configmap.yaml
configmap/configmap created

#查看configmap详情
[root@k8s-master01 ~]# kubectl describe cm configmap -n dev
Name:         configmap
Namespace:    dev
Labels:       <none>
Annotations:  <none>

Data
====
info:
----
username:admin
password:123456

Events:  <none>

接下来创建一个pod-configmap.yaml,将上面创建的configmap挂载进去

apiVersion: v1
kind: Pod
metadata:
  name: pod-configmap
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    volumeMounts: # 将configmap挂载到目录
    - name: config
      mountPath: /configmap/config
  volumes: # 引用configmap
  - name: config
    configMap:
      name: configmap
#创建pod
[root@k8s-master01 ~]# kubectl create -f pod-configmap.yaml
pod/pod-configmap created

#查看pod
[root@k8s-master01 ~]# kubectl get pod pod-configmap -n dev
NAME            READY   STATUS    RESTARTS   AGE
pod-configmap   1/1     Running   0          6s

#进入容器
[root@k8s-master01 ~]# kubectl exec -it pod-configmap -n dev /bin/sh
#cd /configmap/config/
#ls
info
#more info
username:admin
password:123456

#可以看到映射已经成功,每个configmap都映射成了一个目录
#key--->文件     value---->文件中的内容
#此时如果更新configmap的内容, 容器中的值也会动态更新

Secret

在kubernetes中,还存在一种和ConfigMap非常类似的对象,称为Secret对象。它主要用于存储敏感信息,例如密码、秘钥、证书等等。

首先使用base64对数据进行编码

[root@k8s-master01 ~]# echo -n 'admin' | base64 #准备username
YWRtaW4=
[root@k8s-master01 ~]# echo -n '123456' | base64 #准备password
MTIzNDU2

接下来编写secret.yaml,并创建Secret

apiVersion: v1
kind: Secret
metadata:
  name: secret
  namespace: dev
type: Opaque
data:
  username: YWRtaW4=
  password: MTIzNDU2
#创建secret
[root@k8s-master01 ~]# kubectl create -f secret.yaml
secret/secret created

#查看secret详情
[root@k8s-master01 ~]# kubectl describe secret secret -n dev
Name:         secret
Namespace:    dev
Labels:       <none>
Annotations:  <none>
Type:  Opaque
Data
====
password:  6 bytes
username:  5 bytes

创建pod-secret.yaml,将上面创建的secret挂载进去:

apiVersion: v1
kind: Pod
metadata:
  name: pod-secret
  namespace: dev
spec:
  containers:
  - name: nginx
    image: nginx:1.17.1
    volumeMounts: # 将secret挂载到目录
    - name: config
      mountPath: /secret/config
  volumes:
  - name: config
    secret:
      secretName: secret
#创建pod
[root@k8s-master01 ~]# kubectl create -f pod-secret.yaml
pod/pod-secret created

#查看pod
[root@k8s-master01 ~]# kubectl get pod pod-secret -n dev
NAME            READY   STATUS    RESTARTS   AGE
pod-secret      1/1     Running   0          2m28s

#进入容器,查看secret信息,发现已经自动解码了
[root@k8s-master01 ~]# kubectl exec -it pod-secret /bin/sh -n dev
/ # ls /secret/config/
password  username
/ # more /secret/config/username
admin
/ # more /secret/config/password
123456

至此,已经实现了利用secret实现了信息的编码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1296868.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot集成Spring Security+jwt+kaptcha验证(简单实现,可根据实际修改逻辑)

参考文章 【全网最细致】SpringBoot整合Spring Security JWT实现用户认证 需求 结合jwt实现登录功能&#xff0c;采用自带/login接口实现权限控制 熟悉下SpringSecurity SpringSecurity 采用的是责任链的设计模式&#xff0c;是一堆过滤器链的组合&#xff0c;它有一条很…

2013年全国硕士研究生入学统一考试管理类专业学位联考数学试题——解析版

文章目录 2013 级考研管理类联考数学真题一、问题求解&#xff08;本大题共 15 小题&#xff0c;每小题 3 分&#xff0c;共 45 分&#xff09;下列每题给出 5 个选项中&#xff0c;只有一个是符合要求的&#xff0c;请在答题卡上将所选择的字母涂黑。真题&#xff08;2013-01&…

每天学习一点shell系列(2)—函数的参数传递

参考博客&#xff1a;shell 脚本-10函数_eno_zeng的博客-CSDN博客 $n 或 ${n} &#xff1a;函数内使用 $n 或 ${n} 访问对应的参数, 数字代表参数的前后顺序, $1 代表第一个参数, $2 代表第三个参数, $n 代表第n个参数&#xff1b;当n>10时&#xff0c;需要使用${n}来获取参…

基于 ESP32-S3 的 Walter 开发板

Walter 是一款基于 ESP32-S3 且拥有 5G LTE 连接功能的新型开源开发套件。 近日&#xff0c;比利时公司 DPTechnics BV 推出了一款基于乐鑫 ESP32-S3 且拥有 5G LTE 连接功能的新型开源开发套件。该套件即将在 Crowd Supply 平台上发布&#xff0c;您可以点击此处了解详情。 无…

【Fastadmin】一个完整的轮播图功能示例

目录 1.效果展示&#xff1a; 列表 添加及编辑页面同 2.建表&#xff1a; 3.使用crud一键生成并创建控制器 4.html页面 add.html edit.html index.php 5.js页面 6.小知识点 1.效果展示&#xff1a; 列表 添加及编辑页面同 2.建表&#xff1a; 表名&#xff1a;fa_x…

[足式机器人]Part2 Dr. CAN学习笔记-数学基础Ch0-9阈值选取-机器视觉中应用正态分布和6-sigma

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-数学基础Ch0-9阈值选取-机器视觉中应用正态分布和6-sigma 5M1E——造成产品质量波动的六因素 人 Man Manpower 机器 Machine 材料 Material 方法 Method 测量 Measurment 环境 Envrionment DMAI…

OpenCVForUnity的首部姿态识别功能

手势识别功能 插件名称&#xff1a;OpenCVForUnity 效果 关键代码 HandPoseEstimationMediaPipeExample MediaPipeHandPoseEstimator 第二步&#xff1a; 性能问题&#xff0c;功能是不错&#xff0c;可是一个手部识别的demo&#xff0c;cpu直接飙满了&#xff0c;这哪行。…

Spring基于注解开发

Component的使用 基本Bean注解&#xff0c;主要是使用注解的方式替代原有的xml的<bean>标签及其标签属性的配置&#xff0c;使用Component注解替代<bean>标签中的id以及class属性&#xff0c;而对于是否延迟加载或是Bean的作用域&#xff0c;则是其他注解 xml配置…

【hcie-cloud】【6】华为云Stack网络流量详述【VXLAN简介、华为云Stack节点内部网络结构、华为云Stack网络服务流量走向】、缩略语

文章目录 前言VXLAN简介云数据中心业务对网络的诉求和目标数据中心大二层网络的发展VXLAN简介VXLAN的作用及优势VXLAN网络架构 - Spine-LeafSpine-Leaf架构的基本概念Spine-Leaf架构的优势VXLAN基本概念及工作原理&#xff1a;NVEVXLAN基本概念及工作原理&#xff1a;VTEPVXLAN…

前端:HTML+CSS+JavaScript实现轮播图2

前端&#xff1a;HTMLCSSJavaScript实现轮播图2 1. 和之前版本的区别2. 实现原理3. 针对上述的改进3. 参考代码 1. 和之前版本的区别 之前发布的那篇关于轮播图的文章在这&#xff1a;前端&#xff1a;HTMLCSSJavaScript实现轮播图&#xff0c;只能说存在问题吧&#xff01;比…

Spring Security 6.x 系列(10)—— SecurityConfigurer 配置器及其分支实现源码分析(二)

一、前言 在本系列文章&#xff1a; Spring Security 6.x 系列&#xff08;4&#xff09;—— 基于过滤器链的源码分析&#xff08;一&#xff09; 中着重分析了Spring Security在Spring Boot自动配置、 DefaultSecurityFilterChain和FilterChainProxy 的构造过程。 Spring …

golang学习笔记——爬虫colly入门

文章目录 爬虫第一个爬虫colly爬虫框架colly爬虫示例-爬取图片colly采集器配置CallbacksAdd callbacks to a CollectorCall order of callbacks1. OnRequest2. OnError3. OnResponse4. OnHTML5. OnXML6. OnScraped OnHTML方法 参考资料 爬虫 很多语言都可以写爬虫&#xff0c;…

【蓝桥杯省赛真题50】Scratch消除字母 蓝桥杯scratch图形化编程 中小学生蓝桥杯省赛真题讲解

目录 scratch消除字母 一、题目要求 编程实现 二、案例分析 1、角色分析

Word插件-好用的插件-一键设置字体--大珩助手

常用字体 整理了论文、公文常用字体 整理了常用的论文字体&#xff0c;可一键设置当前节或选择的文字的字体 字体设置 包含字体选择、字体颜色 特殊格式 包含首字下沉、段落分栏、统一宽度、双行合一、上标切换、下标切换、转为全角、转为半角、挖词填空、当前日期、大写金…

[架构之路-259]:目标系统 - 设计方法 - 软件工程 - 软件设计 - 架构设计 - 面向服务的架构SOA与微服务架构(以服务为最小的构建单位)

目录 前言&#xff1a; 二、软件架构层面的复用 三、什么是面向服务的架构SOA 3.1 什么是面向服务的架构 3.2 面向服务架构的案例 3.3 云服务&#xff1a;everything is service一切皆服务 四、什么是微服务架构 4.1 什么是微服务架构 4.2 微服务架构的案例 五、企业…

使用RSA工具进行对信息加解密

我们在开发中需要对用户敏感数据进行加解密&#xff0c;比如密码 这边科普一下RSA算法 RSA是非对称加密算法&#xff0c;与对称加密算法不同;在对称加密中&#xff0c;相同的密钥用于加密和解密数据,因此密钥的安全性至关重要;而在RSA非对称加密中&#xff0c;有两个密钥&…

PandoraFMS 监控软件 任意文件上传漏洞复现

0x01 产品简介 Pandora FMS 是用于监控计算机网络的软件。 Pandora FMS 允许以可视化方式监控来自不同操作系统、服务器、应用程序和硬件系统(例如防火墙、代理、数据库、Web 服务器或路由器)的多个参数的状态和性能。 0x02 漏洞概述 PandoraFMS upload_head_image.php 接…

队列排序:给定序列a,每次操作将a[1]移动到 从右往左第一个严格小于a[1]的元素的下一个位置,求能否使序列有序,若可以,求最少操作次数

题目 思路&#xff1a; 赛时代码&#xff08;先求右起最长有序区间长度&#xff0c;再求左边最小值是否小于等于右边有序区间左端点的数&#xff09; #include<bits/stdc.h> using namespace std; #define int long long const int maxn 1e6 5; int a[maxn]; int n; …

SpringBoot系列之启动成功后执行业务的方法归纳

SpringBoot系列之启动成功后执行业务逻辑。在Springboot项目中经常会遇到需要在项目启动成功后&#xff0c;加一些业务逻辑的&#xff0c;比如缓存的预处理&#xff0c;配置参数的加载等等场景&#xff0c;下面给出一些常有的方法 实验环境 JDK 1.8SpringBoot 2.2.1Maven 3.2…

机器学习之无监督学习:九大聚类算法

今天&#xff0c;和大家分享一下机器学习之无监督学习中的常见的聚类方法。 今天&#xff0c;和大家分享一下机器学习之无监督学习中的常见的聚类方法。 在无监督学习中&#xff0c;我们的数据并不带有任何标签&#xff0c;因此在无监督学习中要做的就是将这一系列无标签的数…