DAP数据集成与算法模型如何结合使用

news2024/11/26 18:55:08

企业信息化建设会越来越完善,越来越体系化,当今数据时代背景下更加强调、重视数据的价值,以数据说话,通过数据为企业提升渠道转化率、改善企业产品、实现精准运营,为企业打造自助模式的数据分析成果,以数据驱动决策。

在实际项目中,要使用DAP数据分析平台将企业业务数据进行数据的清洗和汇聚,同时基于DAP平台的展现配置,可以根据业务主题构建相应的展现大屏,从而实现数据的可视化展现,为企业领导层的数据把控和运营决策分析提供支持,本篇文档主要介绍数据采集部分是如何进行使用。

1整体介绍

DAP数据分析平台就是采集各个业务系统的数据,进行数据筛选(表和字段、数据)、质量校验等步骤建立数仓,保证数据标准性、完整性、准确性,从而实现企业业务数据的统一,通过数据可视化展现、数据服务来展现DAP数据分析平台的价值。

1.1产品方案

首先介绍一下数通的产品体系:

数通的所有产品都是通过K8S云平台进行部署搭建产品环境,通过不同的产品组合方案来解决企业面临的不同信息化困境,帮助企业完善信息化发展。

上图所示通过DAP数据分析平台+MDM基础数据平台+ESB企业服务总线组成了数据中台方案,本次介绍的DAP数据分析平台就是此方案的核心,基础数据进行主数据治理,DAP数据分析平台进行业务数据治理,通过ESB进行数据的集成,帮助整合企业数据,统一管理,提升企业的数据价值。

1.2功能架构

数据分析平台全生命周期是通过采集各个业务系统数据构建数仓,从而进行有效分析的过程,能够真实、准确、有效地将企事业内部及行业外部相关数据进行可视化展现,帮助企事业提升行业洞察力,加强决策力,从而提升整体竞争力。

数据分析平台功能有:

1.数据来源(应用系统定义、数据源头配置、ODS数据定义)。

2.数仓模型(业务主题、指标管理、维度配置、事实配置、模型配置)。

3.数据调度(规则校验、调度资源、调度任务、日志管理)。

4.分析模型(数据集配置、立方体配置、业务类报表、多维度分析)。

5.算法模型(算法原型、算法开发、算法调用、算法日志)。

6.展现配置(导航管理、组件管理、展现主题、装饰管理)。

7.数据服务(接收服务、查询服务、算法数据、统计服务、指标服务、业务服务)。

8.统计分析(数据地图、质量分析、影响分析、血缘分析)。

9.系统管理(资源配置、组织机构、角色管理、人员管理、功能管理、系统日志)。

1.3算法说明

DAP的算法模型需要结合数据集来进行使用,数据通过数据治理的三步流程之后(数据从业务系统采集抽取到ODS,ODS清洗转换到数据仓库,数据仓库的数据进行加工汇总)构建的数据仓库,从而通过配置构建数据集,通过数据集的历史数据结合算法原型构建算法开发,将数据训练后生成模型对象,结合算法调用对未来数据进行预测,算法在使用时,还要符合业务逻辑,所以接下来对数据集成如何结合算法模型使用进行说明。

2数据说明

本次数据说明以销售数据进行说明,通过各项指标来对于销售额,利润额等数据来进行预测。

2.1 背景说明

本次预测的数据背景为对咖啡门店的销售额进行预测,通过营销费用的增多与减少,对应的就是店内的折扣力度,也就会影响店内订单数、客单价等指标,从而影响销售额的高低,而在使用材料中,使用品质好的材料,成本就会增高,利润降低,反之则是成本降低,利润增高。

使用历史数据中的订单数、客单价、假期天数等特征值去训练模型,将训练好的模型结合当前数据或未来数据中的假期天数等特征指标去预测销售额以及对于门店级别进行分类。

2.2 模型设计

1.构建门店表作为维度表,表字段中添加门店名称、门店等级,门店等级字段作为分类模型的预测字段。

2.构建销售表,表字段中添加当月假期天数、线上订单、线下订单、营销费用、材料费用、人工费用字段作为特征字段,添加时间(年月)作为维度信息,添加实际销售额字段作为度量字段,添加预测销售额字段作为预测值字段。

2.3 数据构建

1.采集同步:

(1)首先在ODS定义中使用参考表创建的方式将在业务系统中添加的门店表以及门店销售表采集抽取到ODS中间库,在编辑页面定义唯一字段与比较字段,确保数据同步时的唯一性以及准确性。

(2)编辑好ODS表之后,对于ODS表进行创建,结合ESB创建消息流程,进行数据同步。

2.清洗转换

清洗转换的作用是将ODS中的数据清洗转换到数据仓库,也就是对字段进行选取以及配置规则校验,接下来对具体实现进行说明。

(1)维度表:

维表是属于枚举类的信息,所以使用门店表作为维表,在创建维表时,来源表选择ODS中的门店表。

在字段信息中,除了导入原有字段外,需要手动新增预测等级字段,在进行分类时,对于预测等级字段进行回写。

同时在字段信息中,要对于字段配置唯一字段以及规则校验,目的同样是确保数据的唯一性以及准确性。

编辑好维表之后,对于维表进行创建,结合ESB创建消息流程,进行数据同步,同样在ESB设计器中的MF服务中创建消息流程,选择HTTP请求中的ODS转换到EDW。

(2)基础事实表:

基础事实表创建的为门店销售表,在来源表中选取ODS的门店销售表进行创建。

在字段信息中,导入需要的字段,并对字段配置唯一字段以及规则校验,操作与维表一致。字段编辑好之后,进行表的创建,同时结合ESB生成调度流程。

3.加工汇总:

(1)汇总事实表的创建分为两种方式:横向汇总与纵向汇总,横向汇总是对于字段配置表达式的方式进行字段间的汇总,纵向汇总是对于字段配置聚合类别的方式进行汇总,本次是基于上述所创建的门店销售基础事实表进行创建,通过销售额/(线上订单+线下订单)得出客单价,所以在创建时,来源表选取门店基础事实表,创建方式选择横向汇总。

(2)在字段信息中先进行数据导入,接下来手动新增客单价字段预计预测销售额字段。

(3)在汇总配置中新增表达式对于客单价字段进行汇总加工。

以上配置好之后,对于汇总事实表进行创建,结合ESB创建消息流程,进行数据同步。

3模型构建

数据仓库构建好之后,要对于数仓模型以及分析模型进行构建,接下来对于操作步骤进行说明。

3.1数仓模型

1.数据仓库中的数据构建好之后可以基于维度表与事实表创建数仓模型,数仓模型通过配置表之间的关联关系,将多表组合在一起进行数据展现,数仓模型也是创建分析模型的基础

2.创建门店销售统计模型,添加门店表以及门店销售汇总事实表。

3.在关联关系中配置两表之间的关联。

3.2分析模型

上述的数仓模型构建好之后就可以对于分析模型进行创建,因为后续算法模型需要使用的数据来源是数据集,所以本次在分析模型中,创建数据集即可。

首先在基本信息页面选取创建好的数仓模型。

在字段选择页面中选取使用的字段,保存后数据集就创建完成。

3.3数据展现

以上数据配置好之后,点击数据预览,就可以对于门店销售数据进行查看。

4算法模型

算法模型分为算法原型、算法开发、算法调用、算法日志,算法原型是在系统中预置好的算法,供算法开发使用,算法开发是针对开发人员使用,通过对算法开发进行数据、条件、属性以及对算法模型的调优之后,生成算法调用,供使用人员进行调用,调用后会生成对应的日志,查看调用详情信息。

由于算法原型是预置在产品中,所以接下来对于算法开发以及算法调用功能使用进行说明。

4.1算法开发

本次算法开发说明使用回归模型进行说明,回归模型属于有监督的模型,主要是针对连续性的数据进行预测,本次说明的回归模型是基于公司下多个门店历史年月中的假期天数、线上订单数、线下订单数与销售额之间的关系从而对于未来时间段的销售额进行预测。

1.首先在新增页面选取数据集以及算法原型。

2.在字段选择中选取特征值以及预测值,本次的销售预测是使用假期天数、线上、线下订单以及客单价来预测销售额。

3.因为是预测,所以需要使用一些大批量的历史数据来进行预测,这可以确保预测的准确性,所以需要在条件配置中配置时间条件。

4.算法开发会生成算法调用,算法调用的作用是对于数据进行预测后,将数据回写到数据库中,最终可以通过配置进行数据的可视化展现,所以需要对于数据的回写策略进行配置,回写分为表回写以及字段回写,本次使用的是字段回写,目标字段配置的是需要回写的字段,条件字段作为唯一值,确保数据的一致性。

5.以上配置好之后,对数据生成CSV文件,接下来对算法进行开发。

6.点击算法开发后打开在Jupyter NoteBook生成的算法开发代码,该代码是通过算法原型生成,接下来要对代码进行开发以及调优,下面对下图中的三段代码进行说明:

(1)在第一段代码中,首先是读取生成的csv文件,接下来对文件中的特征值和预测值拆分X和y,并将X和y中的数据拆分为8比2的占比作为各自的训练集以及测试集。

(2)在第二段代码中,通过传递的模型集合以及数据,求出不同模型的均方差值,均方差值是衡量预测值与真实值之间差异的指标,差值越小,说明模型的预测值与真实值之间的差异越小,模型的性能就越好,根据循环对比,找出最优模型。

(3)在第三段代码中,创建回归模型集合,调用第二段代码,找出最优模型。

7.接下来对之后的代码进行说明:

(1)在下图第一段代码中,根据寻找出的最优模型,进行参数调优,参数调优采取的方法是交叉验证,通过给出一个区间的参数,使用交叉验证后,会返回一个使用最佳参数的模型。

(2)第二段代码就是使用最优模型对数据进行打图,进行数据的可视化,可以直观地看出模型的效果好坏,下图的蓝色散点图为预测值散点图的分布,虚线是真实值最小值到最大值的直线分布,可以看出两个图形之间基本吻合,所以可以得出当前模型的效果很好。

8.算法开发好后进行解析代码,将代码存储至数据库中,最后再生成py文件,py文件是算法进行训练时需要调用的文件。

9.接下来点击执行,执行成功后生成模型对象,模型对象可以理解为算法开发后训练好的对象,在算法调用时,会调用该对象,使用该对象执行训练需要预测的数据特征值,就可以得到预测值,算法开发的执行方式同时还支持定时触发,条件值应该设为变量条件,比如当前年份/月份-1等,这样经过定时训练后就可以保证会实时训练新的数据,从而得到最新预测模型对象。

4.2算法调用

1.算法调用是基于算法开发生成,创建方式分为两种,一是在算法开发页面中,生成算法调用,二是在算法调用页面手动新增

2.在算法调用的条件配置中,需要将预测的条件进行添加。

3.配置好之后点击执行,将算法调用进行执行。

4.执行之后,会生成对应的算法日志,日志中可以查看执行的参数信息以及训练结果等信息。

5.算法调用执行方式除了手动执行还支持定时执行以及事件执行,定时执行是保证数据预测的实时性,事件执行是确保源数据发生变化时,预测同时也要进行执行,保证数据的一致性以及准确性。

4.3功能展示

算法在调用结束之后,会将数据进行预测并回写,接下来对预测分析导航进行查看。

5心得总结

在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动,所以数据一定是标准的、完整的、准确的,通过上述数据采集把业务系统中不正确数据过滤掉、调整后,使数仓中的数据具有可用性,使用正确的数据进行分析预测,最后对于数据进行可视化展现,提升数据价值,正确引导公司的发展。

5.1过程总结

数据的可视化展现可以使大家能够用一些简短的图形就能体现那些复杂信息,而有些数据是预测型、统计分析类型,所以需要使用机器学习来对数据进行预测或者统计分析,最终使数据进行可视化的展现,让决策者可以轻松地获取查看各种不同的数据源。来分析过去某时间段企业的发展趋势,去规划未来的发展方向。

5.2重要事项

使用DAP数据分析平台进行算法数据预测时需要注意如下几个重点:

1.数据要具有业务逻辑,不论是在实际开发还是在数据预置,都要贴近业务,这才能使产品更加具有可用能力。

2.数据预置要有逻辑性,数据在进行预测时都是结合历史数据进行预测,只有数据之间的关系紧密,预测的数据才能准确。

3.要确保数据的联动性,数据从源头发生变化时,要进行事件的触发,确保预测数据的准确性。

5.3说在最后

DAP数据分析平台作用在于对海量数据进行采集分析治理,将治理后的数据通过配置进行可视化展现,提升数据价值,而算法模型的使用主要是结合历史数据对未来数据进行预测,并且可以通过调整预测值可以反推数据参数的变化,这可以有效地让决策者做出决策,提升企业价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1296377.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

无人机巡山护林,林业无人机智能助力绿色守护

随着全球环保意识的不断提高,无人机巡山护林已经成为解决森林巡检难题的一种独特而高效的方式。在我国,各地正积极探索无人机在森林防火、病虫害监测以及生态调查等领域的创新应用。随着无人机技术的不断演进,其在推动森林保护和可持续发展方…

高性能和多级高可用,云原生数据库 GaiaDB 架构设计解析

1 云原生数据库和 GaiaDB 目前,云原生数据库已经被各行各业大规模投入到实际生产中,最终的目标都是「单机 分布式一体化」。但在演进路线上,当前主要有两个略有不同的路径。 一种是各大公有云厂商选择的优先保证上云兼容性的路线。它基于存…

工作上Redis安装及配置

下载redis软件 第一步:解压压缩包 tar -zxvf redis-7.0.14.tar.gz 第二步:移动redis存放目录(结合个人需求而定!) redis-7.0.14:解压后的文件路径 /usr/local:移动后的文件路径 mv redis-7.0.…

QT作业2

使用手动连接,将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中,在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中,在槽函数中判断ui界面上输入的账号是否为"admin",密码是否为…

Flutter一直 Running Gradle task ‘assembleDebug‘

Flutter升级到3.13.7之后,一直Running Gradle task ‘assembleDebug’,之前运行还没问题。 试了各种方法,比如添加阿里云镜像,flutter\packages\flutter_tools\gradle目录下修改build.gradle.kts文件,都不行。 参考大佬…

WeLive开源在线客服系统源码 /PHP企业级在线客服聊天系统源码/支持移动+PC端+中英文双语自由切换

源码简介: WeLive开源在线客服系统源码 ,它作为企业级在线客服系统源码,可以支持移动PC端,中英文双语自由切换。 WeLive开源PHP在线客服系统源码 WeLive5是一个企业级的在线客服系统, 程序小巧使用简单。 WeLive5是一个企业级的…

UE4 在编辑器下进行打印 学习笔记

创建WidgetComponent 创建Blueprint Interface 创建接口名字 在WidgetComponent里面使用Tick调用才创建的接口 随便创建一个Actor 在BP里面使用这个接口 在这里搜索它调用 在这里就可以做对应的操作 把组件加到Actor上面 把这个Actor放入场景 就开始打印了

Navicat 技术指引 | 适用于 GaussDB 分布式的自动运行功能

Navicat Premium(16.3.3 Windows 版或以上)正式支持 GaussDB 分布式数据库。GaussDB 分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能,还提供强大的高阶功能(如模型、结…

视频剪辑:视频转码实用技巧,批量将MP4转为MP3音频

随着数字媒体设备的普及,视频和音频文件已成为日常生活中的重要组成部分。有时,可能要将MP4视频文件转换为MP3音频文件,以提取其中的音频内容或者进行其他处理。这是耗费时间的任务,那要如何操作呢?本文详解云炫AI智剪…

【已解决】SpringBoot Maven 打包失败:class lombok.javac.apt.LombokProcessor 错误

文章目录 出错原因解决办法总结 最新项目部署的时候&#xff0c;出现了一个maven打包失败的问题&#xff0c;主要是lombok这个组件出的问题&#xff0c;具体的错误信息如下&#xff1a; 我的lombok版本如下&#xff1a; <dependency><groupId>org.projectlombok&l…

【数值计算方法(黄明游)】解线性代数方程组的迭代法(一):向量、矩阵范数与谱半径【理论到程序】

文章目录 一、向量、矩阵范数与谱半径1、向量范数a. 定义及性质补充解释范数差 b. 常见的向量范数 l 1 l_1 l1​、 l 2 l_2 l2​、 l ∞ l_\infty l∞​ 范数性质关系 2、矩阵范数a. 矩阵的范数b. 常见的矩阵范数相容范数算子范数 3、谱半径4、知识点总结1. 向量范数2. 矩阵范数…

数字化转型怎么才能做成功?_光点科技

数字化转型对于现代企业来说是一场必要的革命。它不仅仅是技术的更迭&#xff0c;更是企业战略、文化和运营方式全面升级的体现。一个成功的数字化转型能够使企业更具竞争力、更灵活应对市场变化&#xff0c;并最终实现业务增长和效率提升。那么&#xff0c;数字化转型怎么才能…

vue 使用 h函数

我的项目前端使用的vben-admin框架。现在有个需求需要在列表中显示一个自定义链接 先贴出做成功的效果如下图。 在做之前通过咨询和搜索得知 可以用vue的h函数来返回一个dom。 那我就去看vue官网对于h函数的说明和示例&#xff0c;大致浏览了一页&#xff0c;感觉还是有点迷糊…

【GEE笔记】在线分类流程,标注样本点、分类和精度评价

GEE在线分类流程 介绍 GEE&#xff08;Google Earth Engine&#xff09;是一个强大的地理信息处理平台&#xff0c;可以实现在线的遥感影像分析和处理。本文将介绍如何使用GEE进行在线的分类流程&#xff0c;包括标注样本点、分类和精度评价。本文以2020年5月至8月的哨兵2影像…

MQTT协议对比TCP网络性能测试模拟弱网测试

MQTT正常外网压测数据---时延diff/ms如下图&#xff1a; MQTT弱网外网压测数据 TCP正常外网压测数据 TCP弱网外网压测数据 结论&#xff1a; 在弱网场景下&#xff0c;MQTT和TCP的网络性能表现会有所不同。下面是它们在弱网环境中的对比&#xff1a; 连接建立&#xff1a;M…

el-table 跨页多选

步骤一 在<el-table>中:row-key"getRowKeys"和selection-change"handleSelectionChange" 在<el-table-column>中type"selection"那列&#xff0c;添加:reserve-selection"true" <el-table:data"tableData"r…

【iOS】数据持久化(三)之SQLite3数据库

目录 数据库简介什么是SQLite&#xff1f;在Xcode引入SQLite APISQL语句的种类存储字段类型 SQLite的使用创建数据库创建表和删表数据表操作增&#xff08;插入数据INSERT&#xff09;删&#xff08;删除数据DELETE&#xff09;改&#xff08;更新数据UPDATE&#xff09;查&…

深度学习还可以从如下方面进行创新!!

文章目录 一、我认为可以从如下5个方向进行创新总结 一、我认为可以从如下5个方向进行创新 新的模型结构&#xff1a;尽管现在的深度学习模型已经非常强大&#xff0c;但是还有很多未被探索的模型结构。探索新的模型结构可以带来更好的性能和更低的计算成本。 新的优化算法&a…

[渗透测试学习] Devvortex - HackTheBox

文章目录 信息搜集解题步骤提交flag 信息搜集 扫描端口 nmap -sV -sC -p- -v --min-rate 1000 10.10.11.242发现80端口有http服务&#xff0c;并且是nginx服务 尝试访问web界面&#xff0c;发现跳转到http://devvortex.htb/无法访问 我们用vim添加该域名即可 sudo vim /etc/…

fatal error: sql.h: No such file or directory的解决办法

Ubuntu环境下运行命令 sudo apt install unixodbc-dev 来源&#xff1a;https://github.com/mkleehammer/pyodbc/issues/441