AI助力智慧农业,基于YOLOv8全系列模型【n/s/m/l/x】开发构建不同参数量级的识别系统

news2025/1/19 11:37:51

智慧农业随着数字化信息化浪潮的演变有了新的定义,在前面的系列博文中,我们从一些现实世界里面的所见所想所感进行了很多对应的实践,感兴趣的话可以自行移步阅读即可:

《自建数据集,基于YOLOv7开发构建农田场景下杂草检测识别系统》 

《轻量级目标检测模型实战——杂草检测》

《激光除草距离我们实际的农业生活还有多远,结合近期所见所感基于yolov8开发构建田间作物杂草检测识别系统》

《基于yolov5的农作物田间杂草检测识别系统》

《AI助力智慧农业,基于YOLOv3开发构建农田场景下的庄稼作物、田间杂草智能检测识别系统》

《AI助力智慧农业,基于YOLOv5全系列模型【n/s/m/l/x】开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》

 《AI助力智慧农业,基于YOLOv6最新版本模型开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》

《AI助力智慧农业,基于YOLOv7【tiny/yolov7/yolov7x】开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》 

《AI助力智慧农业,基于YOLOv4开发构建不同参数量级农田场景下庄稼作物、杂草智能检测识别系统》 

自动化的激光除草,是未来大面积农业规划化作物种植生产过程中非常有效的技术手段,本文是AI助力智慧农业的第六篇系列博文,主要的目的就是想要基于yolov8来开发构建不同参数量级的检测模型,助力智能检测分析。

首先看下实例效果:

实例数据集如下所示:

共包含2种不同类型的目标对象,如下所示:

['crop', 'weed']

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获超过1.6w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

预训练模型可以到官方项目中自行下载即可。

五款不同参数量级的模型保持完全相同的训练参数配置,等待训练完成后,我们对其训练过程进行对比可视化,如下所示:

【mAP0.5】

mAP0.5(mean Average Precision at 0.5 intersection over union)是一种用于评估目标检测算法性能的指标。在目标检测任务中,mAP0.5衡量了检测算法在不同类别目标上的平均精度。

mAP0.5的计算过程包括以下几个步骤:

对于每个类别的目标,首先计算出每个检测结果的置信度(confidence)和相应的预测框的准确度(accuracy)。
根据置信度对检测结果进行排序,通常是按照置信度从高到低进行排序。
采用不同阈值(通常为0.5)作为IOU(Intersection over Union)的阈值,计算每个类别下的Precision-Recall曲线。
在Precision-Recall曲线上,计算出在不同召回率(Recall)下的平均精度(Average Precision)。
对所有类别的平均精度进行求平均,即得到mAP0.5指标。
mAP0.5的取值范围是0到1,数值越高表示检测算法在目标检测任务上的性能越好。它综合考虑了不同类别目标的精度和召回率,并对检测结果进行了排序和评估。

需要注意的是,mAP0.5只是mAP的一种变体,其中IOU阈值固定为0.5。在一些特定的目标检测任务中,可能会使用其他IOU阈值来计算mAP,例如mAP0.5:0.95表示使用IOU阈值从0.5到0.95的范围来计算平均精度。

接下来来看loss走势:

不同模型的差异不大,相对都是比较稳定的。

感兴趣的话也都可以自行尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1293591.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

视觉资料记录

1. 江南才尽,年少无知!_RK3399移植,(02)Cartographer源码无死角解析-免费,(01)ORB-SLAM2源码无死角解析-免费-CSDN博客江南才尽,年少无知!擅长RK3399移植,(02)Cartographer源码无死角解析-免费,(01)ORB-SLAM2源码无死角解析-免费,…

HCIP考试实验

实验更新中,部分配置解析与分析正在完善中........... 实验拓扑图 实验要求 要求 1、该拓扑为公司网络,其中包括公司总部、公司分部以及公司骨干网,不包含运营商公网部分。 2、设备名称均使用拓扑上名称改名,并且区分大小写。 3…

java之“输入与输出”程序详解

java之“输入与输出”程序详解 一、eclipse操作示例1、完整代码2、运行效果3、代码与运行结果关系图 一、eclipse操作示例 1、完整代码 import java.util.Scanner;public class inputOutput {/*** param args 输入与输出*/public static void main(String[] args) {// 输出Sy…

Rsync+Sersync

服务器相关参数 源服务器 192.168.17.101 目标服务器(同步到的服务器) 192.168.17.103 ##目标服务器配置 ###1、配置rsync服务 1、安装rsync yum -y install rsync 2、配置rsync vim /etc/rsyncd.conf 配置文件内容 uid root gid root use c…

【数据结构】C语言结构体详解

目录 前言 一、结构体的定义 二、定义结构体变量 三、结构体变量的初始化 四、使用typedef声明新数据类型名 五、指向结构体变量的指针 总结 🌈嗨!我是Filotimo__🌈。很高兴与大家相识,希望我的博客能对你有所帮助。 &#x1f4a1…

接口测试要测试什么?

第一部分: 首先,在做接口测试的过程中,经常有后端开发会问: 后端接口都测试什么?怎么测的?后端接口测试一遍 ,前端也测试一遍,是不是重复测试了? 于是,为了…

2023年5个自动化EDA库推荐

EDA或探索性数据分析是一项耗时的工作,但是由于EDA是不可避免的,所以Python出现了很多自动化库来减少执行分析所需的时间。EDA的主要目标不是制作花哨的图形或创建彩色的图形,而是获得对数据集的理解,并获得对变量之间的分布和相关…

Apache Kafka CVE-2023-25194(metasploit版)

Step1:用docker搭建环境 Step2:docker查看映射端口 Step3:访问特定端口,然后靶标应用。 Step4:用metasploit进行攻击: 首先,打开metasploit,然后查询需要攻击的板块&#xff0…

对Spring源码的学习:一

目录 BeanFactory开发流程 ApplicationContext BeanFactory与ApplicationContext对比 基于XML方式的Bean的配置 自动装配 BeanFactory开发流程 这里的第三方指的是Spring提供的BeanFactory,Spring启动时会初始化BeanFactory,然后读取配置清单&#…

元宇宙:重塑游戏行业体验下一个前沿

游戏行业在其整个历史中经历了显著的转变,从超级马里奥的像素化冒险发展到Red Dead Redemption等游戏中迷人的开放世界体验。随着时间的推移,游戏不断突破数字领域所能达到的极限。然而,被称为元宇宙的突破性演变将彻底改变游戏行业&#xff…

【复杂gRPC之Java调用go】

1 注意点 一般上来说如果java调用java的话,我们可以使用springcloud来做,而面对这种跨语言的情况下,gRPC就展现出了他的优势。 代码放在这了,请结合前面的go服务器端一起使用 https://gitee.com/guo-zonghao/java-client-grpc /…

2-4、DEBUG和源程序区别

语雀原文链接 文章目录 1、DEBUG 和 汇编编译器MASM区别1:默认进制不同区别2:[地址]示例1:debug示例2:[0]示例3:[寄存器]示例4:ds:[0]小结 区别3:源程序数据不能以字母开头 1、DEBUG 和 汇编编…

labelme等标注工具/数据增强工具输出JSON文件格式检查脚本

标注的文件太多了,还有用数据增强工具生成了一票的新数据。在转换或使用训练时候会报错,错误原因是json中语法有问题,这样会中断程序运行,调试造成很大困扰。 检查确实最后有问题,多写了一次 写一个脚本,用…

机器学习应用 | 使用 MATLAB 进行异常检测(下)

在使用MATLAB 进行异常检测(上)中,我们探讨了什么是异常值,简单的一维数据异常检测问题,针对高维数据的有监督异常检测方法。 在(下)篇中,我们将和大家一起探讨无监督异常检测。 没…

Unity 状态系统

状态系统 原理食用方法Demo 原理 #mermaid-svg-lUbxJ8eMP3KqrEhY {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-lUbxJ8eMP3KqrEhY .error-icon{fill:#552222;}#mermaid-svg-lUbxJ8eMP3KqrEhY .error-text{fill:#55…

算法通关村第十八关-青铜挑战回溯是怎么回事

大家好我是苏麟 , 今天聊聊回溯是怎么个事 . 回溯是最重要的算法思想之一,主要解决一些暴力枚举也搞不定的问题,例如组合、分割、子集、排列,棋盘等。从性能角度来看回溯算法的效率并不高,但对于这些暴力都搞不定的算法能出结果就…

快速排序的非递归实现

上期我们实现了快速排序的递归实现,但是我们知道如果递归深度太深,栈就会溢出,所以我们本期将为大家讲述快速排序的非递归实现,我们需要用到栈的数据结构,我们知道栈中的数据全是在堆区开辟的空间,堆的空间…

【EXCEL】offset函数

语法: offset(reference,row,column,[height],[width]) 例子:

【日常总结】mybatis-plus WHERE BINARY 中文查不出来

目录 一、场景 二、问题 三、原因 四、解决方案 五、拓展(全表全字段修改字符集一键更改) 准备工作:做好整个库备份 1. 全表一键修改 Stage 1:运行如下查询 Stage 2:复制sql语句 Stage 3:执行即可…

Volumetric Lights 2 HDRP

高清晰度渲染管道,包括先进的新功能,如半透明阴影图和直接灯光投射加上许多改进。 插件是一个快速,灵活和伟大的前瞻性光散射解决方案的高清晰度渲染管道。只需点击几下,即可改善场景中的照明视觉效果。 兼容: 点光源 聚光灯 碟形灯 矩形灯 通过覆盖摄像机周围大面积区域的…