智能优化算法应用:基于鼠群算法无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/24 9:55:33

智能优化算法应用:基于鼠群算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于鼠群算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.鼠群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用鼠群算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.鼠群算法

鼠群算法原理请参考:https://blog.csdn.net/u011835903/article/details/120947977
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

鼠群算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明鼠群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1289090.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

mapbox系列:常见功能使用总结

前言 最近在写一个大屏的时候使用mapbox,将开发过程进行总结如下: 功能1:mapbox logo显示与隐藏 使用mapbox时地图上会有mapbox的logo,如下: 设置地图全局样式设置 :deep(.mapboxgl-ctrl) {display: none !import…

第十五届蓝桥杯模拟赛B组(第二期)C++

前言: 第一次做蓝桥模拟赛的博客记录,可能有很多不足的地方,现在将第十五届蓝桥杯模拟赛B组(第二期)的题目与代码与大家进行分享,我是用C做的,有好几道算法题当时自己做的也是一脸懵&#xff0c…

R语言学习

Part1阶段1:入门基础 1安装R和RStudio: 下载并安装R:https://cran.r-project.org/ 下载并安装RStudio:https://www.rstudio.com/products/rstudio/download/ 2Hello World: 学习如何在R中输出"Hello, World!"…

苹果OS X系统介绍(Mac OS --> Mac OS X --> OS X --> macOS)

文章目录 OS X系统介绍历史与版本架构内核与低级系统图形,媒体和用户界面应用程序和服务 特性用户友好强大的命令行安全性集成与互操作性 总结 OS X系统介绍 OS X是由苹果公司为Macintosh计算机系列设计的基于UNIX的操作系统。其界面友好,易于使用&…

论文阅读:Distributed Initialization for VIRO with Position-Unknown UWB Network

前言 Distributed Initialization for Visual-Inertial-Ranging Odometry with Position-Unknown UWB Network这篇论文是发表在ICRA 2023上的一篇文章,本文提出了一种基于位置未知UWB网络的一致性视觉惯性紧耦合优化测距算法( DC-VIRO )的分布式初始化方法。 对于…

【从删库到跑路 | MySQL数据库总结篇】JDBC编程

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【MySQL学习专栏】🎈 本专栏旨在分享学习MySQL的一点学习心得,欢迎大家在评论区讨论💌 目录 一、前言…

【Linux】信号的保存和捕捉

文章目录 一、信号的保存——信号的三个表——block表,pending表,handler表sigset_t信号集操作函数——用户层sigprocmask和sigpending——内核层 二、信号的捕捉重谈进程地址空间(第三次)用户态和内核态sigaction可重入函数volat…

技术博客:Vue中各种混淆用法汇总

​ 摘要 本文主要介绍了在Vue中使用的一些常见混淆用法,包括new Vue()、export default {}、createApp()、Vue.component、Vue3注册全局组件、Vue.use()等,以及如何使用混淆器对代码进行加固,保护应用安全。 引言 在Vue开发中,…

java小工具util系列3:JSON转实体类对象工具

文章目录 准备工作1.JSONObject获取所有的key2.集合中实体对象转换 list中Enrey转Dto3.字符串转List<BusyTimeIndicatorAlarmThreshold>4.json字符串转JSONObject5.list根据ids数组过滤list6.json字符串转JavaBean对象7.json对象转javabean8.jsonObject转map9.List\<U…

007:vue实现与iframe实现页面数据通信

首页先搭建一个html页面和vue页面&#xff0c;在vue页面中&#xff0c;嵌入我们需要的iframe页面 文章目录 1. 搭建 html 页面和 vue 页面2. 实现 iframe 向 vue 页面通信3. 在实现 vue 向 iframe 页面通信 1. 搭建 html 页面和 vue 页面 暂定为 iframeDemo.html 和 vueDemo.v…

电子版简历模板精选5篇

电子版简历模板模板下载&#xff08;可在线编辑制作&#xff09;&#xff1a;做好简历&#xff0c;来幻主简历。 电子版简历1&#xff1a; 求职意向 求职类型&#xff1a;全职 意向岗位&#xff1a;ERP咨询顾问 意向城市&#xff1a;北京市 薪资要求&#xff1a;…

Vue 应用程序性能优化:代码压缩、加密和混淆配置详解

简介 在 Vue 应用程序的开发中&#xff0c;代码压缩、加密和混淆是优化应用程序性能和提高安全性的重要步骤。 Vue CLI 是一个功能强大的开发工具&#xff0c;它提供了方便的配置选项来实现这些功能。本文将介绍如何使用 Vue CLI 配置代码压缩、加密和混淆功能&#xff0c;以提…

【矩阵论】Chapter 6—矩阵分解知识点总结复习(附Python实现)

文章目录 1 满秩分解&#xff08;Full-Rank Factorization&#xff09;2 三角分解&#xff08;Triangular Factorization&#xff09;3 正交三角分解&#xff08;QR Factorization&#xff09;4 奇异值分解&#xff08;SVD&#xff09; 1 满秩分解&#xff08;Full-Rank Factor…

【数电笔记】07-基本和复合逻辑运算

目录 说明&#xff1a; 基本逻辑运算 1. 与运算 &#xff08;and gate&#xff09; 2. 或运算 &#xff08;or gate&#xff09; 3. 非运算 &#xff08;not gate &#xff09; 复合逻辑运算 1. 与非运算&#xff08;nand&#xff09; 2. 或非运算&#xff08;nor&…

【python】保存excel

正确安装了pandas和openpyxl库。 可以通过在命令行中输入以下命令来检查&#xff1a; pip show pandas pip show openpyxl 可以使用pip安装 pip install pandas pip install openpyxl#更新 pip install --upgrade pandas pip install --upgrade openpyxl 保存excel …

抖店怎么对接达人带货?达人渠道整理,实操详解!

我是电商珠珠 很多人在抖店开通后&#xff0c;按照流程去正常的跑自然流量&#xff0c;再去找达人带货让自己店铺的流量增多&#xff0c;得到相应的曝光。 但是一些新手小白并不知道从哪去找达人&#xff0c;或者说不知道怎么去筛选达人。 一开始所有人都想着去找头部主播&a…

Deep Learning(wu--84)调参、正则化、优化--改进深度神经网络

文章目录 2偏差和方差正则化梯度消失\爆炸权重初始化导数计算梯度检验OptimizationMini-Batch 梯度下降法指数加权平均偏差修正RMSpropAdam学习率衰减局部最优问题 调参BNsoftmax framework 2 偏差和方差 唔&#xff0c;这部分在机器学习里讲的更好点 训练集误差大&#xff…

matplotlib 默认属性和绘图风格

matplotlib 默认属性 一、绘图风格1. 绘制叠加折线图2. Solarize_Light23. _classic_test_patch4. _mpl-gallery5. _mpl-gallery-nogrid6. bmh7. classic8. fivethirtyeight9. ggplot10. grayscale11. seaborn12. seaborn-bright13. seaborn-colorblind14. seaborn-dark15. sea…

kyuubi整合flink yarn session mode

目录 概述配置flink 配置kyuubi 配置kyuubi-defaults.confkyuubi-env.shhive 验证启动kyuubibeeline 连接使用hive catlogsql测试 结束 概述 flink 版本 1.17.1、kyuubi 1.8.0、hive 3.1.3、paimon 0.5 整合过程中&#xff0c;需要注意对应的版本。 注意以上版本 配置 ky…

C# 通俗讲解Public、Private以及Protected、[HideInInspector]、[SerializeField]的区别

一、故事背景 1.我画了一幅画&#xff0c;把它放在室外&#xff0c;所有人都可以看见这个画&#xff0c;所有人都可以对这个画进行修改。 2.我非常非常努力&#xff0c;赚了一大笔钱&#xff0c;这笔钱&#xff0c;只能我和我的子孙后代用&#xff0c;但如果我的孩子需要传给他…