继续画图带你学习TCP 其他 7 大特性

news2025/1/12 14:26:07

四、滑动窗口机制

五、流量控制

六、拥塞控制 (安全机制)

七、延迟应答 (效率机制)

八、捎带应答 (效率机制)

九、粘包问题

十、保活机制

TCP总结

四、滑动窗口机制

滑动窗口机制,是在可靠性的前提下,进一步地提高传输效率

认识滑动窗口

一发一收的方式:TCP 协议需要对数据进行确认后,才可以发送下一个数据包,如图:

图片

如上图,发送端每发送一个数据包,都需要得到接收端的确认应答以后,才可以发送下一个数据包,是一问一答的串行过程;即每次传输数据都需要等待一个对应的等待时间,那么传输 N 份数据,就需要等待 N 次应答时间,总的传输时间:N 份数据传输时间 + N 份应答传输时间

一发一收的方式性能较低,那么我们一次发送多条数据,就可以大大地提高性能(其实是将多个段的等待时间重叠在一起了),如图:

图片

滑动窗口本质上是批量传输数据

总的传输时间:N 份数据传输时间重叠成了一份时间,N 份应答传输时间重叠成了一份时间,相当于把多份数据的传输时间和等待 ACK 的时间压缩成一份了,总的等待时间少了,传输效率也就高了

a. 窗口

窗口大小: 不等待 ACK 的情况下,批量发送的最大数据量,就叫"窗口大小" (如上图,就是4000个字节,4个字段)

  • 发送前四个字段的时候,不需要等待任何 ACK,直接发送;

  • 收到第一个ACK后,滑动窗口向后移动,继续发送第五个字段的数据,依次类推;

  • 操作系统内核为了维护这个滑动窗口;需要开辟 发送缓冲区 来记录当前还有哪些数据没有应答;只有确认应答过的数据,才能从缓冲区删掉;

  • 窗口越大, 则网络的吞吐率就越高

b. 滑动

窗口范围内的数据是在等待这些数据的 ACK (已经被发送出去)

图片

如上图,当发送方收到 2001 的 ACK,意味着 1001 - 2000 的数据对方已经接收,此时立刻继续传输 5001 - 6000 的数据,则等待 ACK 的数据包的序号就是 2001,3001,4001,5001

丢包问题处理

丢包的两种情况如图:

图片

情况1: 确认应答 (ACK) 丢包

不需要进行额外的处理;在这种情况下,部分 ACK 丢了并不要紧,因为可以通过后续的 ACK进 行确认

理解"确认序号"的含义

从当前序号开始,前面的数据都已经正确到了

如上图,是 1001 的 ACK 丢失,2001 的 ACK 没丢,此时,发送方收到 2001 之后,就会认为 1 - 1000 这个数据也是顺利到达的,1001 丢了无所谓,2001 的 ACK 能够包含 1001 ACK 中的信息

情况2: 数据包丢失

如下图,若是 1001-2000 丢失,然后 2001-3000,3001-4000 等后边的几个数据都顺利到达,此时主机 B 反馈的 ACK 的确认序号始终是 1001;

此时若主机 A 发现连续几个 ACK 都是1001,主机 A 就知道,1001 这个数据丢失,就会重传 1001;

在重传 1001 之前,收到的确认序号都是 1001;

当主机 B 收到 1001 这个数据的时候,由于 2001-7000 这些数据前边已经收到过,接下来的 ACK 就从 7001 开始;

此处的重传,只是重传丢了的数据,其他数据不需要额外重传—— 快速重传(搭配滑动窗口下的超时重传)

图片

"乱序"传输:

图片

图片

五、流量控制

流量控制: 根据接收方的处理能力来反向制衡发送方的发送效率(窗口大小) (通过接收缓冲区的 “剩余空间大小” 来决定发送方的速率)

窗口大小不能无限大,传输速率太快,接收方可能处理不过来

在使用滑动窗口机制进行数据传输时,发送方根据实际情况发送数据包,接收端接收数据包;由于接收端处理数据包的能力是不同的,因此可能出现两种情况:

  • 若窗口过小,发送端发送少量的数据包,接收端很快就处理了,并且还能处理更多的数据包;当传输比较大的数据时需要不停地等待发送方,就会造成很大的延迟

  • 若窗口过大,发送端发送大量的数据包,而接收端处理不了这么多的数据包,就会堵塞链路;若丢弃这些本应该接收的数据包,又会触发重发机制

(第一次的窗口大小是根据链路带宽的大小来决定的) ,发送数据包,接收端接收这些数据包,并返回确认应答包,告诉发送端自己下次希望收到的数据包是多少(新的窗口大小),发送端收到确认应答包以后,将以该窗口大小进行发送数据包

  • 接收端将自己可以接收的缓冲区大小放入 TCP 首部中的 “窗口大小” 字段,通过 ACK 端通知发送端

  • 窗口大小字段越大,说明网络的吞吐量越高

  • 接收端一旦发现自己的缓冲区快满了,就会将窗口大小设置成一个更小的值通知给发送端

  • 发送端接受到这个窗口之后,就会减慢自己的发送速度

  • 如果接收端缓冲区满了,就会将窗口置为0;这时发送方不再发送数据,但是需要定期发送一个窗口探测数据段,使接收端把窗口大小告诉发送端

如下图:

图片

图解:

  • 假设初始窗口大小为4000,发送端发送 4 个数据包,分别为 1-1000,1001-2000,2001-3000 和 3001-4000

  • 接收端接收数据包,接收到 1-1000 数据包之后,设置窗口大小为 3000,告诉发送端自己现在只能处理 3 个数据包,下一次请发送 3 个数据包

  • 发送端接收到确认应答包,查看到接收端返回窗口大小为 3000,知道接收端处理了 1 个数据包;接着继续发送: 1001-2000,2001-3000 和 3001-4000

  • 接收方收到之后,缓冲区只能处理 2 个数据包,发过去的第 3 个数据包 3001-4000 没有被处理;这说明此时接收端只能处理 2 个数据包,第 3 个数据包还需要重新发送

  • 当窗口为 0 时,发送方会暂停发送,也会定时发送一个探测报文;因为接收缓冲区的数据随时可能被取走,一旦取走,就可以接收新的数据(滑动窗口大小是动态变化的

六、拥塞控制 (安全机制)

拥塞控制是考虑网络传输路径上的拥堵程度

虽然TCP有了滑动窗口这个大杀器,能够高效可靠的发送大量的数据;但是如果在刚开始阶段就发送大量的数据,仍然可能引发问题;因为网络上有很多的计算机,可能当前的网络状态就已经比较拥堵,在不清楚当前网络状态下,贸然发送大量的数据,是很有可能雪上加霜,因此,TCP引入 慢启动 机制,先发少量的数据,探探路,摸清当前的网络拥堵状态,再决定按照多大的速度传输数据

图片

线增积减 (和式增加,积式减少)

像上面这样的拥塞窗口增长速度,是指数级别的,“慢启动” 只是指初使时慢,但是增长速度非常快,具体的增长如下图:

图片

图片

刚开始的时候从1指数增长,到达阈值后开始线性增长,如果出现网络阻塞,直接减小到初始值,然后再次指数增长到达新的阈值(新阈值为上次阻塞窗口大小的一半),再次线性增长直到网络阻塞,一直这样动态变换循环

为啥要动态变化??

网络的拥堵情况是瞬息万变的,我们要随时根据网络的实际情况进行动态调整 (随时适应网络的变化过程)

七、延迟应答 (效率机制)

目的是为了提高效率,在流量控制的基础上,尽量返回一个合理但又比较大的窗口

在前面我们提到,在发送端发送数据后,接收数据的主机需要返回 ACK应答,此时若立刻返回,窗口可能比较小 (因为缓冲区的数据只处理了一部分),所以 TCP 采用了延迟应答机制,举例:

不带延迟应答:

有一个超市,假设泡面库存最多存放100箱,当前已经存了80箱,空余20箱;

第二天一早,送货小哥来问:“老板,你明天需要多少面?”

老板:“你最多送20箱就行。”

带延迟应答:

第二天一早,送货小哥来问:“老板,你明天需要多少面?”

老板:“我晚上的时候打电话告诉你需要多少。”

(可能白天又卖出了10箱,第二天最多送10箱即可)

延时应答其实就是让 ACK 的发送时间晚一会儿 (不影响可靠性的前提下);

延迟的时间中就会给应用程序提供更多的消费数据的机会,此时时间到了,再发送 ACK 的时候,得到的窗口大小(接收缓冲区的剩余空间就会更大一些)

窗口越大,网络吞吐量就越大,传输效率就越高;我们的目标是在保证网络不拥塞的情况下尽量提高传输效率

问:所有的包都可以延迟应答么?

肯定不是

  • 数量限制: 每隔 N 个包就应答一次 (N一般为2)

  • 时间限制: 超过最大延迟时间就应答一次 (时间一般取200 ms,延迟应答的等待时间不能超过超时重传的时间,不然就重传了)

八、捎带应答 (效率机制)

在延迟应答的基础上,为了进一步提高程序运行效率而引入的机制

在很多情况下,客户端和服务器的通信模式一般都是 Request - Response 模式,即 “一问一答”

如图:

图片

注意:

三次握手中间的 SYN 和 ACK 都是由内核决定的,不涉及不同的时机

上述提到的四次挥手的过程,ACK 是内核决定的,发的 FIN (close方法) 是应用程序代码决定的

九、粘包问题

严格说,粘包问题不是 TCP 自身的机制,而是面向字节流传输所具备的共性问题

粘包,指粘的是应用层数据包,导致数据在处理的时候,容易读取半个应用层数据包

面向字节流: 指的是一次读一个字节,或者一次读两个字节,或者一次读 N 个字节都行

举例:双方建立连接,需要在连接后一段时间内发送不同结构数据,如连接后,有好几种结构

  • “你好不好”

  • “好个P”

读多少个字节才是一个完整的应用层数据包,这个是不清楚的

若一次读一个汉字,读出来就是 “好”;若一次读三个汉字,读出来就是 “好个P”

读法不一样,最终的含义差异也很大;读取应用层数据,就不应该只读半个包

如何避免粘包问题?

归根结底就是一句话,明确两个包之间的边界

TCP 协议本身不帮你区分应用层数据包,相对而言,UDP 协议没这个问题 (UDP 协议就是按照数据包为单位进行收发的)

  • 方式1 - 使用分隔符

比如,上述回答改为 “好个P;”

用分号 ;当做两个包的分隔符,读数据,一直读到分号;才认为是一个完整的应用层数据包

应用层协议,是程序猿自己来定的,只要保证分隔符不和正文冲突即可**

  • 方式2 - 明确包的长度

比如,上述用例改为 “4你好不好3好个P”

先读取最开始的四个字节,得到包的长度3;继续读取3个汉字,于是就读取一个完整的包

HTTP 协议基于 TCP 的应用层协议,自己就会处理好粘包问题,上述两种方式都使用到了:

对于 GET 请求,分隔符就是空行

对于 POST 请求,Content-length 来指定包的长度

思考:对于UDP协议来说,是否也存在 “粘包问题” 呢?

  • 对于UDP,如果还没有上层交付数据,UDP的报文长度仍然在。同时,UDP是一个一个把数据交付给应用层;就有很明确的数据边界

  • 站在应用层的站在应用层的角度,使用UDP的时候,要么收到完整的UDP报文,要么不收;不会出现"半个"的情况

十、保活机制

双方建立交互的连接,并不是一直存在数据交互,有些连接会在数据交互完毕后,主动释放连接,而有些不会,那么在长时间无数据交互的时间段内,交互双方都有可能出现掉电、死机、异常重启,还是中间路由网络无故断开、NAT超时等各种意外

在这些 “异常情况” 下,TCP 对于连接会有一些特殊的处理

举例:

1.进程崩溃: 这种情况,TCP 连接会正常四次挥手 (只要是进程退出,都会自动关闭相关的文件)

2.主机关机(按照流程关机):关机的时候会强制先杀进程,杀进程过程之中就要进行四次挥手了

3.主机断电 / 网线断开:

  • a) 接收方断电。 对端尝试发送消息的时候,就会出现没有 ACK 的情况 — 于是就会触发超时重传 — 重传一定次数,就会重置连接 — 放弃连接

  • b) 发送方断电。对端尝试接收消息,对于接收端来说,本来也不知道发送方什么时候发送,难道就一直等吗?

    解决方案 — 心跳包 TCP 的通信双方,即使在没有数据交互的过程中,也会定时相互传输一个没有数据业务意义的 “心跳包”,只是为了证明 “我活着”,一旦隔了一段时间都没有收到对方的心跳包,就可以认为对端"挂"了

TCP总结

TCP 之所以复杂,是因为它既要保证可靠性,同时又尽可能地提高性能

图片

可靠性:

校验和,序列号

确认应答,超时重传

连接管理,流量控制,拥塞控制

提高性能:

滑动窗口,快速重传

延迟应答,捎带应答

其他:

定时器(超时重传定时器,保活定时器,TIME_WAIT定时器等)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1281827.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

24.Python 网络编程之socket编程

目录 1.认识TCP/IP2.socket编程2.1 使用socket2.2 使用socketserver 1.认识TCP/IP 计算机网络就是把各个计算机连接在一起,在网络中的计算机可以互相通信。 网络编程是如何在程序中实现两台计算机的通信。 网络通信是两台计算机上的两个进程之间的通信。 为了把…

第十一节HarmonyOS 常用容器组件3-Tabs

一、Tabs 1、概述 我们经常使用时,会出现试图切换的场景,比如底部有多个菜单,“首页”、 “我的”等。 两个内容容器的切换: ArkUI开发框架提供了一种页签容器组件Tabs,开发者通过Tabs组件可以很容易的实现内容视图…

目标检测算法改进系列之添加变核卷积AKConv模块

AKConv变核卷积 KConv的主要思想:AKConv(可变核卷积)主要提供一种灵活的卷积机制,允许卷积核具有任意数量的参数和采样形状。这种方法突破了传统卷积局限于固定局部窗口和固定采样形状的限制,从而使得卷积操作能够更加…

C# OpenVINO 直接读取百度Paddle模型实现物体检测( yolov3_darknet)

目录 效果 项目 代码 下载 C# OpenVINO 直接读取百度Paddle模型实现物体检测( yolov3_darknet) 效果 项目 代码 using OpenCvSharp; using Sdcb.OpenVINO; using Sdcb.OpenVINO.Natives; using System; using System.Collections.Generic; using System.Diagnostics; usi…

Micropython for QNX编译过程

Micropython for QNX编译过程 执行步骤 1. https://github.com/micropython/micropython select tag 1.20.0 git clone micropython 2. make -C mpy-cross 3. 修改py/mkenv.mk CROSS_COMPILE ntoaarch64- 注意如果这步必须在make -C mpy-cross 之后执行,如果需要重…

什么?居然可以免费使用Jetbrains?!

JetBrains是一家捷克的软件开发公司,该公司位于捷克的布拉格,并在俄罗斯的圣彼得堡及美国麻州波士顿都设有办公室,该公司最为人所熟知的产品是Java编程语言开发撰写时所用的集成开发环境:IntelliJ IDEA。 如下是jetbrains旗下的产…

Ps:使用 Emoji 字符

Emoji 字符是一种在数字通讯中广泛使用的小图像或表情符号,用于表达情感、活动、物体、地点、天气情况等。 Emoji 源自日本,但现已成为全球数字沟通的一部分。这些字符通常是彩色的,并且能够在不同的设备和平台上保持一致性。 通常&#xff0…

以用户为中心的前端性能

1. 简介 前端性能跟用户体验息息相关。举个栗子,当你打开乘车码扫码进站,网页白屏了很久才加载出来,延误了乘车时间;当你在微信抢红包时,点击按钮后延迟了一会才开始转圈圈,最终没抢到红包。当出现这样的情…

python自学之《艾伯特用Python做科学计算》(1)——(待完善)

好吧,刚开始就打了一波而广告 啄木鸟社区的Python图书概览: http://wiki.woodpecker.org.cn/moin/PyBooks (22/388)

pytorch 模型量化quantization

pytorch 模型量化quantization 1.workflow1.1 PTQ1.2 QAT 2. demo2.1 构建resnet101_quantization模型2.2 PTQ2.3 QAT 参考文献 pytorch框架提供了三种量化方法,包括: Dynamic QuantizationPost-Training Static Quantization(PTQ&#xff0…

基于Logistic回归实现二分类

目录 Logistic回归公式推导: Sigmoid函数: Logistic回归如何实现分类: 优化的方法: 代码: 1.创建一个随机数据集,分类直线为y2x: 为什么用np.hstack()增加一列1? 为什么返回…

协同过滤算法:个性化推荐的艺术与科学

目录 引言: 一、协同过滤算法的基本原理 二、协同过滤算法的应用领域 三、协同过滤算法的优缺点 四、协同过滤算法的未来发展方向 五、结论 引言: 在当今数字化时代,信息过载成为了一个普遍的问题。为了帮助人们更好地发现符合个性化需…

Linux驱动开发学习笔记2《LED驱动开发试验》

目录 一、Linux下LED灯驱动原理 1.地址映射 二、硬件原理图分析 三、实验程序编写 1.LED 灯驱动程序编写 2.编写测试APP 四、运行测试 1.编译驱动程序和测试APP (1)编译驱动程序 (2)编译测试APP 2.运行测试 一、Linux下…

分享81个节日PPT,总有一款适合您

分享81个节日PPT,总有一款适合您 81个节日PPT下载链接:https://pan.baidu.com/s/1V0feg5pZ8C1Szycy40CrUw?pwd6666 提取码:6666 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不易…

Android CardView基础使用

目录 一、CardView 1.1 导入material库 1.2 属性 二、使用(效果) 2.1 圆角卡片效果 2.2 阴影卡片效果 2.3 背景 2.3.1 设置卡片背景(app:cardBackgroundColor) 2.3.2 内嵌布局,给布局设置背景色 2.4 进阶版 2.4.1 带透明度 2.4.2 无透明度 一、CardView 顾名…

【编码魔法师系列_构建型1.3 】抽象工厂模式(Abstract Factory)

学会设计模式,你就可以像拥有魔法一样,在开发过程中解决一些复杂的问题。设计模式是由经验丰富的开发者们(GoF)凝聚出来的最佳实践,可以提高代码的可读性、可维护性和可重用性,从而让我们的开发效率更高。通…

vs 安装 qt qt扩展 改迅雷下载qt

Qt5.14.2安装教程和VS2019中的qt环境配置-CSDN博客 1 安装qt 社区版 免费 Download Qt OSS: Get Qt Online Installer 2 vs安装 qt vs tools 3 vs添加 qt添加 bin/cmake.exe 路径 3.1 扩展 -> qt versions 3.2 4 新版要源码安装 需要自己安装 安装独立安装的旧版 官网…

pygame时序模块time

文章目录 简介时钟对象平抛运动 pygame系列:初步💎加载图像💎图像变换💎直线绘制 简介 之前在更新图形的时候,为了调控死循环的响应时间,用到了time.sleep。而实际上,我们并不需要额外导入其他…

最强Node js 后端框架学习看这一篇文章就够

距离上次认真花时间写作,似乎已经过了许久许久,前端讲了一个新框架 ,叫 Nest.js 下方是课件,有过一定开发经验可跟随视频学习 B站 地址 : https://www.bilibili.com/video/BV1Lg4y197u1/?vd_sourcead427ffaf8a5c8344…

【计算机网络笔记】物理层——数据通信基础

系列文章目录 什么是计算机网络? 什么是网络协议? 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能(1)——速率、带宽、延迟 计算机网络性能(2)…