目标检测算法改进系列之添加变核卷积AKConv模块

news2025/2/26 15:20:53

AKConv变核卷积

KConv的主要思想:AKConv(可变核卷积)主要提供一种灵活的卷积机制,允许卷积核具有任意数量的参数和采样形状。这种方法突破了传统卷积局限于固定局部窗口和固定采样形状的限制,从而使得卷积操作能够更加精准地适应不同数据集和不同位置的目标。
AKConv的改进点:
(1)灵活的卷积核设计:AKConv允许卷积核具有任意数量的参数,这使得其可以根据实际需求调整大小和形状,从而更有效地适应目标的变化。
(2)初始采样坐标算法:针对不同大小的卷积核,AKConv提出了一种新的算法来生成初始采样坐标,这进一步增强了其在处理各种尺寸目标时的灵活性。
(3)适应性采样位置调整:为适应目标的不同变化,AKConv通过获得的偏移量调整不规则卷积核的采样位置,从而提高了特征提取的准确性。
(4)减少模型参数和计算开销:AKConv支持线性增减卷积参数的数量,有助于在硬件环境中优化性能,尤其适合于轻量级模型的应用。

原文地址:AKConv: Convolutional Kernel with Arbitrary Sampled Shapes and Arbitrary Number of Parameters

AKConv结构图

改进实现过程

AKConv定义

import torch.nn as nn
import torch
from einops import rearrange
import math
 
 
class AKConv(nn.Module):
    def __init__(self, inc, outc, num_param, stride=1, bias=None):
        super(AKConv, self).__init__()
        self.num_param = num_param
        self.stride = stride
        self.conv = nn.Sequential(nn.Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias),
                                  nn.BatchNorm2d(outc),
                                  nn.SiLU())  # the conv adds the BN and SiLU to compare original Conv in YOLOv5.
        self.p_conv = nn.Conv2d(inc, 2 * num_param, kernel_size=3, padding=1, stride=stride)
        nn.init.constant_(self.p_conv.weight, 0)
        self.p_conv.register_full_backward_hook(self._set_lr)
 
    @staticmethod
    def _set_lr(module, grad_input, grad_output):
        grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
        grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))
 
    def forward(self, x):
        # N is num_param.
        offset = self.p_conv(x)
        dtype = offset.data.type()
        N = offset.size(1) // 2
        # (b, 2N, h, w)
        p = self._get_p(offset, dtype)
 
        # (b, h, w, 2N)
        p = p.contiguous().permute(0, 2, 3, 1)
        q_lt = p.detach().floor()
        q_rb = q_lt + 1
 
        q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2) - 1), torch.clamp(q_lt[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2) - 1), torch.clamp(q_rb[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
        q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)
 
        # clip p
        p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2) - 1), torch.clamp(p[..., N:], 0, x.size(3) - 1)], dim=-1)
 
        # bilinear kernel (b, h, w, N)
        g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
        g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
        g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
        g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))
 
        # resampling the features based on the modified coordinates.
        x_q_lt = self._get_x_q(x, q_lt, N)
        x_q_rb = self._get_x_q(x, q_rb, N)
        x_q_lb = self._get_x_q(x, q_lb, N)
        x_q_rt = self._get_x_q(x, q_rt, N)
 
        # bilinear
        x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
                   g_rb.unsqueeze(dim=1) * x_q_rb + \
                   g_lb.unsqueeze(dim=1) * x_q_lb + \
                   g_rt.unsqueeze(dim=1) * x_q_rt
 
        x_offset = self._reshape_x_offset(x_offset, self.num_param)
        out = self.conv(x_offset)
 
        return out
 
    # generating the inital sampled shapes for the AKConv with different sizes.
    def _get_p_n(self, N, dtype):
        base_int = round(math.sqrt(self.num_param))
        row_number = self.num_param // base_int
        mod_number = self.num_param % base_int
        p_n_x, p_n_y = torch.meshgrid(
            torch.arange(0, row_number),
            torch.arange(0, base_int), indexing='xy')
        p_n_x = torch.flatten(p_n_x)
        p_n_y = torch.flatten(p_n_y)
        if mod_number > 0:
            mod_p_n_x, mod_p_n_y = torch.meshgrid(
                torch.arange(row_number, row_number + 1),
                torch.arange(0, mod_number),indexing='xy')
 
            mod_p_n_x = torch.flatten(mod_p_n_x)
            mod_p_n_y = torch.flatten(mod_p_n_y)
            p_n_x, p_n_y = torch.cat((p_n_x, mod_p_n_x)), torch.cat((p_n_y, mod_p_n_y))
        p_n = torch.cat([p_n_x, p_n_y], 0)
        p_n = p_n.view(1, 2 * N, 1, 1).type(dtype)
        return p_n
 
    # no zero-padding
    def _get_p_0(self, h, w, N, dtype):
        p_0_x, p_0_y = torch.meshgrid(
            torch.arange(0, h * self.stride, self.stride),
            torch.arange(0, w * self.stride, self.stride),indexing='xy')
 
        p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)
 
        return p_0
 
    def _get_p(self, offset, dtype):
        N, h, w = offset.size(1) // 2, offset.size(2), offset.size(3)
 
        # (1, 2N, 1, 1)
        p_n = self._get_p_n(N, dtype)
        # (1, 2N, h, w)
        p_0 = self._get_p_0(h, w, N, dtype)
        p = p_0 + p_n + offset
        return p
 
    def _get_x_q(self, x, q, N):
        b, h, w, _ = q.size()
        padded_w = x.size(3)
        c = x.size(1)
        # (b, c, h*w)
        x = x.contiguous().view(b, c, -1)
 
        # (b, h, w, N)
        index = q[..., :N] * padded_w + q[..., N:]  # offset_x*w + offset_y
        # (b, c, h*w*N)
 
        index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)
 
        # 根据实际情况调整
        index = index.clamp(min=0, max=x.shape[-1] - 1)
 
        x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)
 
        return x_offset
 
    #  Stacking resampled features in the row direction.
    @staticmethod
    def _reshape_x_offset(x_offset, num_param):
        b, c, h, w, n = x_offset.size()
        # using Conv3d
        # x_offset = x_offset.permute(0,1,4,2,3), then Conv3d(c,c_out, kernel_size =(num_param,1,1),stride=(num_param,1,1),bias= False)
        # using 1 × 1 Conv
        # x_offset = x_offset.permute(0,1,4,2,3), then, x_offset.view(b,c×num_param,h,w)  finally, Conv2d(c×num_param,c_out, kernel_size =1,stride=1,bias= False)
        # using the column conv as follow, then, Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias)
 
        x_offset = rearrange(x_offset, 'b c h w n -> b c (h n) w')
        return x_offset

添加过程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章,里面详细的介绍了其他卷积模块的添加方法,可以参考一下,大致都是添加到C2f、Bottleneck、Ncek、DetectHead部分。
目标检测算法改进系列之添加SCConv空间和通道重构卷积

配置文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, AKConv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, AKConv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, AKConv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, AKConv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, AKConv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, AKConv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1281822.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C# OpenVINO 直接读取百度Paddle模型实现物体检测( yolov3_darknet)

目录 效果 项目 代码 下载 C# OpenVINO 直接读取百度Paddle模型实现物体检测( yolov3_darknet) 效果 项目 代码 using OpenCvSharp; using Sdcb.OpenVINO; using Sdcb.OpenVINO.Natives; using System; using System.Collections.Generic; using System.Diagnostics; usi…

Micropython for QNX编译过程

Micropython for QNX编译过程 执行步骤 1. https://github.com/micropython/micropython select tag 1.20.0 git clone micropython 2. make -C mpy-cross 3. 修改py/mkenv.mk CROSS_COMPILE ntoaarch64- 注意如果这步必须在make -C mpy-cross 之后执行,如果需要重…

什么?居然可以免费使用Jetbrains?!

JetBrains是一家捷克的软件开发公司,该公司位于捷克的布拉格,并在俄罗斯的圣彼得堡及美国麻州波士顿都设有办公室,该公司最为人所熟知的产品是Java编程语言开发撰写时所用的集成开发环境:IntelliJ IDEA。 如下是jetbrains旗下的产…

Ps:使用 Emoji 字符

Emoji 字符是一种在数字通讯中广泛使用的小图像或表情符号,用于表达情感、活动、物体、地点、天气情况等。 Emoji 源自日本,但现已成为全球数字沟通的一部分。这些字符通常是彩色的,并且能够在不同的设备和平台上保持一致性。 通常&#xff0…

以用户为中心的前端性能

1. 简介 前端性能跟用户体验息息相关。举个栗子,当你打开乘车码扫码进站,网页白屏了很久才加载出来,延误了乘车时间;当你在微信抢红包时,点击按钮后延迟了一会才开始转圈圈,最终没抢到红包。当出现这样的情…

python自学之《艾伯特用Python做科学计算》(1)——(待完善)

好吧,刚开始就打了一波而广告 啄木鸟社区的Python图书概览: http://wiki.woodpecker.org.cn/moin/PyBooks (22/388)

pytorch 模型量化quantization

pytorch 模型量化quantization 1.workflow1.1 PTQ1.2 QAT 2. demo2.1 构建resnet101_quantization模型2.2 PTQ2.3 QAT 参考文献 pytorch框架提供了三种量化方法,包括: Dynamic QuantizationPost-Training Static Quantization(PTQ&#xff0…

基于Logistic回归实现二分类

目录 Logistic回归公式推导: Sigmoid函数: Logistic回归如何实现分类: 优化的方法: 代码: 1.创建一个随机数据集,分类直线为y2x: 为什么用np.hstack()增加一列1? 为什么返回…

协同过滤算法:个性化推荐的艺术与科学

目录 引言: 一、协同过滤算法的基本原理 二、协同过滤算法的应用领域 三、协同过滤算法的优缺点 四、协同过滤算法的未来发展方向 五、结论 引言: 在当今数字化时代,信息过载成为了一个普遍的问题。为了帮助人们更好地发现符合个性化需…

Linux驱动开发学习笔记2《LED驱动开发试验》

目录 一、Linux下LED灯驱动原理 1.地址映射 二、硬件原理图分析 三、实验程序编写 1.LED 灯驱动程序编写 2.编写测试APP 四、运行测试 1.编译驱动程序和测试APP (1)编译驱动程序 (2)编译测试APP 2.运行测试 一、Linux下…

分享81个节日PPT,总有一款适合您

分享81个节日PPT,总有一款适合您 81个节日PPT下载链接:https://pan.baidu.com/s/1V0feg5pZ8C1Szycy40CrUw?pwd6666 提取码:6666 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不易…

Android CardView基础使用

目录 一、CardView 1.1 导入material库 1.2 属性 二、使用(效果) 2.1 圆角卡片效果 2.2 阴影卡片效果 2.3 背景 2.3.1 设置卡片背景(app:cardBackgroundColor) 2.3.2 内嵌布局,给布局设置背景色 2.4 进阶版 2.4.1 带透明度 2.4.2 无透明度 一、CardView 顾名…

【编码魔法师系列_构建型1.3 】抽象工厂模式(Abstract Factory)

学会设计模式,你就可以像拥有魔法一样,在开发过程中解决一些复杂的问题。设计模式是由经验丰富的开发者们(GoF)凝聚出来的最佳实践,可以提高代码的可读性、可维护性和可重用性,从而让我们的开发效率更高。通…

vs 安装 qt qt扩展 改迅雷下载qt

Qt5.14.2安装教程和VS2019中的qt环境配置-CSDN博客 1 安装qt 社区版 免费 Download Qt OSS: Get Qt Online Installer 2 vs安装 qt vs tools 3 vs添加 qt添加 bin/cmake.exe 路径 3.1 扩展 -> qt versions 3.2 4 新版要源码安装 需要自己安装 安装独立安装的旧版 官网…

pygame时序模块time

文章目录 简介时钟对象平抛运动 pygame系列:初步💎加载图像💎图像变换💎直线绘制 简介 之前在更新图形的时候,为了调控死循环的响应时间,用到了time.sleep。而实际上,我们并不需要额外导入其他…

最强Node js 后端框架学习看这一篇文章就够

距离上次认真花时间写作,似乎已经过了许久许久,前端讲了一个新框架 ,叫 Nest.js 下方是课件,有过一定开发经验可跟随视频学习 B站 地址 : https://www.bilibili.com/video/BV1Lg4y197u1/?vd_sourcead427ffaf8a5c8344…

【计算机网络笔记】物理层——数据通信基础

系列文章目录 什么是计算机网络? 什么是网络协议? 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能(1)——速率、带宽、延迟 计算机网络性能(2)…

【1】基于多设计模式下的同步异步日志系统-项目介绍

1. 项目介绍 本项⽬主要实现⼀个日志系统, 其主要支持以下功能: • 支持多级别日志消息 • 支持同步日志和异步日志 • 支持可靠写⼊日志到控制台、文件以及滚动文件中 • 支持多线程程序并发写日志 • 支持扩展不同的日志落地⽬标地 2. 开发环境 • CentOS 7 • vs…

Node版本管理nvm工具安装及使用问题

安装和配置 下载地址 nvm官方下载window环境直接下nvm-setup.zip解压安装即可。 安装效验以及镜像配置 在cmd中,输入nvm -v 会反馈相应的安装版本,即表示安装成功。配置镜像源: nvm node_mirror https://npm.taobao.org/mirrors/node/ nvm npm_mir…

GitHub上1.5K标星的QA和软件测试学习路线图

​最近在GitHub上发现一个项目,项目描述了作为QA工程师,进行软件测试技能提升时的,建议的软件测试学习顺序图​。 虽然2021年起就不再更新了,但是居然有1.5K的​星。 整个项目有两个部分​: ​1.QA和软件测试学习顺序…