YOLOv7+姿态估计Pose+tensort部署加速

news2025/1/18 20:21:59

YOLOv7-Pose

YOLOv7是一种高效的目标检测算法,用于实时物体检测。姿态估计Pose是一种用于识别和跟踪人体关键点的技术。TensorRT是一个针对深度学习推理任务进行加速的高性能推理引擎。

将YOLOv7和姿态估计Pose与TensorRT结合可以实现快速而准确的目标检测和姿态估计任务。首先,使用YOLOv7进行目标检测,它具有高效的网络结构和多尺度特征融合机制,能够在保持准确性的同时提高推理速度。然后,利用得到的目标框信息,将其输入到Pose模型中,进行姿态估计。Pose模型通过分析人体关键点来确定人体的姿态,例如头部、手臂、腿部等。

为了进一步提升推理速度,可以使用TensorRT进行加速。TensorRT利用深度学习模型中的并行计算、内存优化和精度调整等技术,对模型进行优化和推理加速。通过将YOLOv7和Pose模型转换为TensorRT可执行文件,可以充分利用GPU的计算能力,实现更快的推理速度。

总之,通过将YOLOv7和姿态估计Pose与TensorRT结合,可以实现高效的目标检测和姿态估计任务。这种部署加速方案不仅提高了推理速度,还保持了较高的准确性,适用于实时应用场景,如视频监控、人体行为分析等
在这里插入图片描述

实现YOLOv7:可训练的免费套件为实时目标检测设置了最新技术标准

YOLOv7-Pose的姿态估计是基于YOLO-Pose的。关键点标签采用MS COCO 2017数据集。

训练

使用预训练模型yolov7-w6-person.pt进行训练。训练命令如下:

python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train.py --data data/coco_kpts.yaml --cfg cfg/yolov7-w6-pose.yaml --weights weights/yolov7-w6-person.pt --batch-size 128 --img 960 --kpt-label --sync-bn --device 0,1,2,3,4,5,6,7 --name yolov7-w6-pose --hyp data/hyp.pose.yaml

部署

  1. 导出ONNX模型

运行以下命令生成onnx模型和引擎模型:

python models/export_onnx.py \
    --weights weights/yolov7-w6-pose.pt \
    --img-size 832 \
    --device 0 \
    --batch-size 1 \
    --simplify
  1. 导出TensorRT模型

使用脚本:

python models/export_TRT.py \
    --onnx weights/yolov7-w6-pose.onnx \
    --batch-size 1 \
    --device 1 \
    --fp16

或者使用trtexec:

trtexec \
    --onnx=weights/yolov7-w6-pose.onnx \
    --workspace=4096 \
    --saveEngine=weights/yolov7-w6-pose-FP16.engine \
    --fp16

推理

  1. PyTorch模型推理
python detect_multi_backend.py \
    --weights weights/yolov7-w6-pose.pt \
    --source data/images \
    --device 0 \
    --img-size 832 \
    --kpt-label
  1. ONNX模型推理
python detect_multi_backend.py \
    --weights weights/yolov7-w6-pose.onnx \
    --source data/images \
    --device 0 \
    --img-size 832 \
    --kpt-label
  1. TensorRT模型推理
python detect_multi_backend.py \
    --weights weights/yolov7-w6-pose.engine \
    --source data/images \
    --device 0 \
    --img-size 832 \
    --kpt-label

测试

使用yolov7-w6-pose.pt进行测试:

官方YOLOv7-pose和YOLO-Pose代码只在test.py中计算检测mAP。若要计算关键点mAP,需使用COCO API。在此仓库中实现的oks_iou矩阵计算加速了关键点mAP的计算。测试关键点mAP时,oks区域设置为0.6乘以ground truth box的区域。

  1. 测试PyTorch模型
python test_multi_backend.py \
    --weights weights/yolov7-w6-pose.pt \
    --data data/coco_kpts.yaml \
    --img-size 832 \
    --conf-thres 0.001 \
    --iou-thres 0.6 \
    --task val \
    --device 0 \
    --kpt-label
  1. 测试ONNX模型
python test_multi_backend.py \
    --weights weights/yolov7-w6-pose.onnx \
    --data data/custom_kpts.yaml \
    --img-size 832 \
    --conf-thres 0.001 \
    --iou-thres 0.6 \
    --task val \
    --device 0 \
    --kpt-label
  1. 测试TensorRT模型
python test_multi_backend.py \
    --weights weights/yolov7-w6-pose-FP16.engine \
    --data data/coco_kpts.yaml \
    --img-size 832 \
    --conf-thres 0.001 \
    --iou-thres 0.6 \
    --task val \
    --device 0 \
    --kpt-label

INT8校准

python models/export_TRT.py \
    --onnx weights/yolov7-w6-pose.onnx \
   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1280581.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Element UI 实战:跨页保存表格选中状态与判断状态可选性的高效方案

引言 在前文中,我们曾深入探讨了在修改数据后跨页时提醒用户可能丢失数据的问题。虽然这种方式对于一些场景是足够的,但当涉及选择框时,我们需要更为智能和高效的解决方案。在本文中,我们将分享一种基于 Element UI 的实际案例&am…

opencv学习二:加载显示图片

文章目录 加载显示图片(一)函数1.imread()读取图片(1)matplotlib和opencv中imread函数的区别 加载显示图片 (一)函数 1.imread()读取图片 Mat imread(const string& filename, int flags1 );第一个参…

ASP.NET-BS结构的城市酒店入住信息管理系统的设计

2 理论基础 2.1 数据库技术 数据库技术应用中,经常用到的基本概念有:数据库(DB)、数据库管理系统(DBMS)、数据库系统(DBS)、数据库技术及数据模型。 数据库技术是研究数据库的结构、…

【Linux服务器Java环境搭建】04 JDK安装(JAVA环境安装)

【Linux服务器Java环境搭建】01购买云服务器以及在服务器中安装Linux系统 【Linux服务器Java环境搭建】02 通过xftp和xshell远程连接云服务器 【Linux服务器Java环境搭建】03 Git工具安装 【Linux服务器Java环境搭建】04 JDK安装(JAVA环境安装) 【Linux服…

【Linux服务器Java环境搭建】02 通过xftp和xshell远程连接云服务器

【Linux服务器Java环境搭建】01购买云服务器以及在服务器中安装Linux系统 【Linux服务器Java环境搭建】02 通过xftp和xshell远程连接云服务器 【Linux服务器Java环境搭建】03 Git工具安装 【Linux服务器Java环境搭建】04 JDK安装(JAVA环境安装) 【Linux服…

Linux4.7、环境变量

个人主页:Lei宝啊 愿所有美好如期而遇 目录 基本概念 见见环境变量 指令原理 常见环境变量及其测试 环境变量相关指令 环境变量组织方式 通过代码获取环境变量 通过系统变量获取环境变量以及设置环境变量 环境变量的全局属性 基本概念 首先,…

深入理解同源限制:网络安全的守护者(下)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

Hdoop学习笔记(HDP)-Part.10 创建集群

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

机器学习笔记 - 什么是3D语义场景完成/补全?

一、什么是3D语义场景补全? 3D 语义场景完成(Semantic Scene Completion)是一种机器学习任务,涉及以体素化形式预测给定环境的完整3D场景(完成3D形状的同时推断场景的 3D 语义分割的任务)。这是通过使用深度图和为场景提供上下文的可选 RGB 图像来完成的。目标是以一种可轻…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《余电上网/制氢方式下微电网系统全生命周期经济性评估》

该标题涉及到对微电网系统的全生命周期经济性进行评估,其重点关注两种运营方式:余电上网和制氢。以下是对标题的解读: 微电网系统: 微电网是指一种小规模的电力系统,通常包括分布式能源资源(如太阳能、风能…

搭建 ebpf 开发测试环境

0 内容说明 这部分主要讲述了如何通过官网学习ebpf,以及如何搭建自己的ebpf开发测试环境,主要是需要安装哪些工具链。 1 ebpf在线学习 ebpf官网中提供了一个快速在线学习ebpf的路径,在这个学习平台中一共有两项学习内容,一个是…

ubuntu下快速搭建docker环境训练yolov5数据集

参考文档 yolov5-github yolov5-github-训练文档 csdn训练博客 一、配置环境 1.1 安装依赖包 前往清华源官方地址 选择适合自己的版本替换自己的源 # 备份源文件 sudo cp /etc/apt/sources.list /etc/apt/sources.list_bak # 修改源文件 # 更新 sudo apt update &&a…

操作系统期末复习(1)

复习资料 操作系统笔记 操作系统教程书 课程PPT 王道计算机考研 操作系统_哔哩哔哩_bilibili 操作系统部分重点内容 - TinyChens Studio - 互联网技术学习工作经验分享 学校考试题型 一、简答题(大概有6道) 二、填空题 三、解析题(大…

论文阅读——Loss odyssey in medical image segmentation

Loss odyssey in medical image segmentation github:https://github.com/JunMa11/SegLossOdyssey 这篇文章回顾了医学图像分割中的20种不同的损失函数,旨在回答:对于医学图像分割任务,我们应该选择哪种损失函数? 首…

【多线程】-- 10线程同步synchronized方法/块

多线程 6 线程同步 同步方法 由于我们可以通过private关键字来保证数据对象只能被方法访问,所以我们只需要针对方法提出一套机制,这套机制就是synchronized关键字,它包括以下两种用法: ​ synchronized方法和synchronized块 …

C语言--求一个十进制整数中1的个数

一.题目描述⭐ 求一个十进制整数中1的个数 比如: 输入:10201 输出:2 (这个数字中1的个数是2) 二.思路分析⭐ 数字类的问题我们可以用取模,或者取余运算。 首先定义一个计数器,用来统计1的个数。 输入数字…

Kubernetes实战(六)-多系统架构容器镜像构建实战

1 背景 最近在一个国产化项目中遇到了这样一个场景,在同一个 Kubernetes 集群中的节点是混合架构的,即其中某些节点的 CPU 架构是 x86 的,而另一些节点是 ARM 的。为了让镜像在这样的环境下运行,一种最简单的做法是根据节点类型为…

Python面向对象④:继承【侯小啾python领航班系列(二十二)】

Python面向对象④:继承【侯小啾python领航班系列(二十二)】 大家好,我是博主侯小啾, 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹…

随心玩玩(十)git

写在前面:研究生一年多了,一直浑浑噩噩的,在深度学习的泥潭挣扎了好久,终于走出了精神内耗的泥潭…好久没有写博客了,决定重新捡起来…记录一下学习吧~ 之前写了一篇git的博客,【github 从0开始的基本操作…

<蓝桥杯软件赛>零基础备赛20周--第8周第2讲--排序的应用

报名明年4月蓝桥杯软件赛的同学们,如果你是大一零基础,目前懵懂中,不知该怎么办,可以看看本博客系列:备赛20周合集 20周的完整安排请点击:20周计划 每周发1个博客,共20周(读者可以按…