Hdoop学习笔记(HDP)-Part.14 安装YARN+MR

news2025/1/23 7:04:37

目录
Part.01 关于HDP
Part.02 核心组件原理
Part.03 资源规划
Part.04 基础环境配置
Part.05 Yum源配置
Part.06 安装OracleJDK
Part.07 安装MySQL
Part.08 部署Ambari集群
Part.09 安装OpenLDAP
Part.10 创建集群
Part.11 安装Kerberos
Part.12 安装HDFS
Part.13 安装Ranger
Part.14 安装YARN+MR
Part.15 安装HIVE
Part.16 安装HBase
Part.17 安装Spark2
Part.18 安装Flink
Part.19 安装Kafka
Part.20 安装Flume

十四、安装YARN+MR

1.MR中间结果存储权限

使用Yarn提交MapReduce任务的时候,中间结果会保存在HDFS,/user/username/,如果/user目录下用户目录下不存在,则被创建,当MR执行结束之后,中间结果会被删除,目录保留。因此需要在Ranger中对/user的权限做策略。
在这里插入图片描述

2.安装服务

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
YARN的部分存储路径调整:
Node Manager
YARN NodeManager Local directories:/data01/hadoop/yarn/local
YARN NodeManager Log directories:/data01/hadoop/yarn/log
Application Timeline Server
yarn.timeline-service.leveldb-state-store.path:/data01/hadoop/yarn/timeline
yarn.timeline-service.leveldb-timeline-store.path:/data01/hadoop/yarn/timeline
Advanced yarn-hbase-env
is_hbase_system_service_launch:true
use_external_hbase:false
YARN可使用内置的HBase数据库,也可以使用外部;使用内置时,需要is_hbase_system_service_launch设置为true
Advanced ranger-yarn-security
Add YARN Authorization:取消勾选
该选项是禁用YARN本身的ACL权限控制,YARN队列的权限控制由RANGER统一管理
注:需要先对NameNode页面的认证取消了,否则ResourceManager修改后也不生效
MAPREDUCE2的部分存储路径调整:
Advanced mapred-site
mapreduce.jobhistory.recovery.store.leveldb.path:/data01/hadoop/mapreduce/jhs
Custom mapred-site
mapred.local.dir:/data01/hadoop/mapred
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.ResourceManager HA

(1)启用HA

在ACTIONS->Enable ResourceManager HA中配置
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)确认配置文件

启用HA后,会在/etc/hadoop/conf/yarn-site.xml中出现如下关于HA的配置项
在这里插入图片描述
指定zk下对应的文件目录为/yarn-leader-election,对应的rm节点为hdp01.hdp.com和hdp02.hdp.com
在zookeeper中查看也同样生成了对应的文件目录
在这里插入图片描述

(3)确认YARN、MR2配置

①CPU资源调度
目前的CPU被划分为虚拟CPU,这里的虚拟CPU是yarn自己引入的概念,因为每个服务器的CPU计算能力不一样,有的机器可能是其他机器计算能力的两倍,然后可以通过多配置几个虚拟CPU弥补差异。在yarn中,CPU的相关配置如下:
yarn.nodemanager.resource.cpu-vcores
表示该节点上YARN可使用的虚拟CPU个数,默认是8,注意,目前推荐将该值设置为与物理CPU核数数目相同。如果节点CPU核数不够8个,则需要调减小这个值,而YARN不会智能的探测节点的物理CPU总数。
yarn.scheduler.minimum-allocation-vcores
单个任务可申请的最小虚拟CPU个数,默认是1,如果一个任务申请的CPU个数少于该数,则该对应的值改为这个数。
yarn.scheduler.maximum-allocation-vcores
单个任务可申请的最多虚拟CPU个数,默认是4。这里说的cpu个数都是说的虚拟cpu,默认的是1个物理cpu=2个虚拟cpu。
②Memory资源调度
yarn一般允许用户配置每个节点上可用的物理资源,注意,这里是"可用的",不是物理内存多少,就设置多少,因为一个服务器节点上会有若干的内存,一部分给yarn,一部分给hdfs,一部分给hbase。在yarn中,Memory相关的配置如下:
yarn.nodemanager.resource.memory-mb
设置该节点上yarn可使用的内存,默认为8G,如果节点内存资源不足8G,要减少这个值,yarn不会智能的去检测内存资源,一般这个设置yarn的可用内存资源
yarn.scheduler.minimum-allocation-mb
单个任务可申请的最小的内存大小,默认是1G,当内存不够时,会自动按照一定大小累加内存。
yarn.scheduler.maximum-allocation-mb
单个任务最大申请物理内存量,默认为8291MB
③示例
以hdp03-05(8C、8G)为例,
yarn.nodemanager.resource.cpu-vcores 虚拟core
这个参数根据自己生产服务器决定,比如服务器很富裕,那就直接1:1,设置成8,如果服务器不是很富裕,那就直接成1:2,设置成8,本次设置为16
yarn.nodemanager.resource.memory-mb 总内存
生产上一般要预留15-20%的内存,那么可用内存就是8*0.8=6.4G,本次设置为6G
yarn.scheduler.minimum-allocation-mb 单任务最小内存
如果设置成500M,那6/0.5 = 12,就是最多可以跑12个container
如果设置成1G,那6/1 = 6,就是最多可以跑6个container
本次设置为1G
yarn.scheduler.minimum-allocation-vcores 单任务最少vcore
如果设置vcore = 1,那么16/1 = 16,就是最多可以跑16个container,如果设置成这个,根据上面内存分配的情况,最多只能跑6个container,vcore有点浪费
如果设置vcore = 2,那么16/2 = 8,就是最多可以跑8个container
yarn.scheduler.maximum-allocation-vcores 单任务最多vcore
一般就设置成4个,cloudera公司做过性能测试,如果cpu大于等于5之后,cpu利用率反而不是很好(固定经验值)
yarn.scheduler.maximum-allocation-mb 单任务最大内存
这个要根据实际业务设定,如果有大任务

4.测试

(1)创建租户并分配对应的资源队列

在这里插入图片描述
跳转至YARN Queue Manager页面,针对之前的租户tenant1和tenant2,新建资源队列,注意所有队列总和要为100%,否则会报错
在这里插入图片描述
在这里插入图片描述
租户与队列资源关系绑定
[u | g] [username : groupname] [yarn队列的名字]
本次绑定为
u:tenant1:tenant1,u:tenant2:tenant2
在这里插入图片描述
保存本次操作内容
在这里插入图片描述
查看resourcemanager页面,可以看到已经更新出新的资源队列
在这里插入图片描述

(2)队列使用权限

可使用官方提供的测试jar包
https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-examples
在OpenLDAP中创建账号ranger_yarn,重启UserSync服务后将账号同步至Ranger中,然后在kerberos中创建同样的账号(注:该测试jar包只能用账号ranger_yarn,队列offline)

kadmin.local
addprinc -randkey ranger_yarn
ktadd -kt /root/keytab/ranger_yarn.keytab ranger_yarn

在Yarn中创建队列及账号与队列的映射关系
在这里插入图片描述
队列offline、账号ranger_yarn都准备好后,在Ranger上创建授权关系
在这里插入图片描述
① 计算圆周率
使用ranger_yarn登录,运行计算圆周率任务

kinit -kt /root/keytab/ranger_yarn.keytab ranger_yarn
hadoop jar /root/hadoop-mapreduce-examples-3.1.1.3.0.1.4-1.jar pi -Dmapred.job.queue.name=offline 10 50

hadoop jar是hadoop运行jar包命令
第一个参数pi:表示MapReduce程序执行圆周率计算
第二个参数:用于指定map阶段运行的任务次数,并发度,这是是10
第三个参数:用于指定每个map任务取样的个数,这里是50
在这里插入图片描述
在Yarn中可查看Application的信息
在这里插入图片描述
此时在运行jar包时指定队列为tenant1,执行报错,说明权限

② 单词词频统计
首先创建要统计词频的文件,并上传到hdfs上,提前做好对ranger_yarn的hdfs授权

kinit -kt /etc/security/keytabs/nn.service.keytab nn/hdp01.hdp.com@HDP315.COM
hdfs dfs -mkdir /testhdfs/ranger_yarn
kinit -kt /root/keytab/ranger_yarn.keytab ranger_yarn
hdfs dfs -put /root/wordcount_input /testhdfs/ranger_yarn
hdfs dfs -ls /testhdfs/ranger_yarn

运行词频统计jar包

kinit -kt /root/keytab/ranger_yarn.keytab ranger_yarn
hadoop jar /root/hadoop-mapreduce-examples-3.1.1.3.0.1.4-1.jar wordcount -Dmapred.job.queue.name=offline /testhdfs/ranger_yarn/wordcount_input /testhdfs/ranger_yarn/wordcount_output

第一个参数:wordcount表示执行单词统计
第二个参数:指定输入文件的路径
第三个参数:指定输出结果的路径(该路径不能已存在)
统计完成会在输出目录生成结果

hdfs dfs -cat /testhdfs/ranger_yarn/wordcount_output/part-r-00000

在这里插入图片描述

5.常用指令

(1)查看命令

yarn application -list
yarn application -list -appStates <ALL,NEW,NEW_SAVING,SUBMITTED,ACCEPTED,RUNNING,FINISHED,FAILED,KILLED>

(2)Kill命令
根据id杀死任务

yarn application -kill <application_id>

(3)查看日志
查询Application日志

yarn logs -applicationId <ApplicationId>

查询Container日志

yarn logs -applicationId -containerId <ApplicationId> -containerId <ContainerId>

(4)查看尝试运行的任务
查看尝试运行的任务

yarn applicationattempt -list<ApplicationId>

查看尝试运行任务的状态

yarn applicationattempt -status <ApplicationAttemptId>

(5)查看容器
列出所有Container

yarn container -list <ApplicationAttemptId>

打印Container状态

yarn container -status <ContainerId>

6.常见报错

(1)Timeline Service启动报错

启动时报错:

java.util.concurrent.ExecutionException: org.apache.zookeeper.KeeperException$NoNodeException: KeeperErrorCode = NoNode for /atsv2-hbase-secure/hbaseid

在这里插入图片描述
在Yarn中的CONFIGS->ADVANCED->Advanced yarn-hbase-env中,将is_hbase_system_service_launch启用
在这里插入图片描述

(2)History Server启动一会后报错

启动时无报错,等几分钟后报错并停止,在hdp02上查看日志,/var/log/hadoop-mapreduce/mapred/hadoop-mapred-historyserver-hdp02.log
报错信息为:

Error creating intermediate done directory: [hdfs://hdp315:8020/mr-history/tmp]
Permission denied: user=mapred, access=WRITE, inode="/mr-history"

在这里插入图片描述
查看hdfs上的目录权限,确认权限归属无问题
在这里插入图片描述
原因是Ranger上取消了联合授权功能,在Ranger上没有对应的策略开放该目录,导致mapred用户无法访问对应的目录,开启联合授权功能后恢复。

(3)告警:ATS embedded HBase is NOT running on hdp01.hdp.com

告警信息:ATS embedded HBase is NOT running on hdp01.hdp.com
在这里插入图片描述
resourceMananger的JVM内存是1G,内存太小导致的,将ResourceManager中的Java heap size的JVM内存增加到了2048MB
在这里插入图片描述
重启Yarn服务后告警消失

(4)提交任务后状态一直为ACCEPTED

主要可能的原因是分配给容器的内存过小导致,正常情况下需要适当调整分配内存,本次是因为总体内存量不大,而在分配queue:offline的时候,设置的资源大小为5%,导致无法正常运行,而是一直停留在分配资源阶段,重新分配队列资源大小后恢复。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1279609.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

可用的镜像 yum 源

目录 ftp.sjtu.edu.cn 镜像 yum 源centos 的镜像 yum 源 mirrors.sohu.comcentos 的镜像 yum 源 mirrors.163.comcentos 的镜像 yum 源 ftp.sjtu.edu.cn 镜像 yum 源 镜像 yum 源地址 &#xff1a; http://ftp.sjtu.edu.cn/centos/ centos 的镜像 yum 源 http://ftp.sjtu.edu…

git如何关联克隆远程仓库

一、添加远程仓库 之前我们仅仅是在本地创建了一个Git本地仓库&#xff0c;这里我们再在GitHub创建一个Git远程仓库&#xff0c;并且让这两个仓库进行远程同步&#xff0c;这样&#xff0c;GitHub上的仓库既可以作为备份&#xff0c;又可以让其他人通过该仓库来协作开发。 1.…

面试--各种场景问题总结

1.在开发过程中&#xff0c;你是如何保证机票系统的正常运行的&#xff1f; 用户、测试、监控和日志、安全措施、数据备份、系统设计、需求分析 2.在机票系统开发过程中&#xff0c;你最有成就的事情&#xff0c;为什么&#xff1f; 用户体验感、高可用和稳定性、客户满意度、系…

使用Visual Studio创建第一个C代码工程

文章目录 2019创建C工程创建C文件运行 上一节我们使用记事本编辑C代码&#xff0c;在命令行运行文件&#xff0c;这种方式只是作为对编译器的了解&#xff0c;实际的开发中一般使用集成开发环境比较多&#xff0c;因为 集成开发环境操作比较简单&#xff0c;通常可编辑&#x…

cc-product-waterfall仿天猫、淘宝购物车店铺商品列表组件

cc-product-waterfall仿天猫、淘宝购物车店铺商品列表组件 引言 在电商应用中&#xff0c;购物车体验的优化对于提升用户满意度和转化率至关重要。在本文中&#xff0c;我们将深入探讨如何使用cc-product-waterfall组件&#xff0c;结合uni-number-box和xg-widget&#xff0c;…

WebGL笔记:图形缩放的原理和实现

缩放 1 &#xff09;原理 缩放可以理解为对向量长度的改变&#xff0c;或者对向量坐标分量的同步缩放 如下图&#xff0c;比如让向量OA 收缩到点B的位置&#xff0c;也就是从OA变成OB&#xff0c;缩放了一半 2 &#xff09;公式 已知 点A的位置是(ax,ay,az)点A基于原点內缩了…

L1-009:N个数求和

目录 ⭐题目描述⭐ ⭐分析 ⭐程序代码 运行结果 ⭐文案分享⭐ ⭐题目描述⭐ 本题的要求很简单&#xff0c;就是求N个数字的和。麻烦的是&#xff0c;这些数字是以有理数分子/分母的形式给出的&#xff0c;你输出的和也必须是有理数的形式。 输入格式&#xff1a; 输入第一行给出…

GAN:PacGAN-生成对抗网络中两个样本的威力

论文&#xff1a;https://arxiv.org/pdf/1712.04086.pdf 代码&#xff1a;GitHub - fjxmlzn/PacGAN: [NeurIPS 2018] [JSAIT] PacGAN: The power of two samples in generative adversarial networks 发表&#xff1a;2016 一、摘要 1&#xff1a;GAN最重大的缺陷是&#xf…

数据库管理-第121期 我为什么写文章(202301203)

数据库管理-第121期 我为什么写文章&#xff08;202301203&#xff09; 其实呢~大周末我不是太想写文章的&#xff0c;周五HaloDB起了个头还有一堆可以做的事情都计划到下周了&#xff0c;但是昨天发生了一件事情&#xff0c;让我很是不开心&#xff1a;强盗逻辑&#xff0c;白…

部署 Draw.io 思维导图工具

1&#xff09;Draw.io 介绍 提到流程图&#xff0c;大家第一时间可能会想到 Visio&#xff0c;不可否认&#xff0c;VIsio 确实是功能强大&#xff0c;但是软件为收费&#xff0c;并且因为其功能强大&#xff0c;导致安装需要很多的系统内存&#xff0c;并且是不可跨平台使用。…

分治-归并算法——LCR 170. 交易逆序对的总数

文章目录 &#x1f33c;0. 归并排序&#x1f33b;1. 题目&#x1f33c;2. 算法原理&#x1f337;3. 代码实现 &#x1f33c;0. 归并排序 归并排序是典型的分治&#xff0c;将数组分成若干个子数组&#xff0c;数组两两比较&#xff0c;不是很清楚的&#xff0c;可以查看此篇文…

VUE设计与实现共读系列之ref的实现【响应式原理】

前言 我们先顺一下vue使用响应式数据的流程&#xff1a; vue 是通过 ref 和 reactive 来创建响应式值&#xff0c;改变响应式值&#xff0c;视图跟着发生变化。 我们今天就来看一下ref和reactive是如何实现的 准备 首先&#xff0c;打开ref函数的位置 我们可以看到一个被re…

10行代码实现vue路由最简单的登陆拦截

需求&#xff1a;不涉及任何角色权限&#xff0c;基本实现目标&#xff0c;有token就可查看任何页面&#xff0c;否则就去登陆&#xff0c;来一步步实现 1. 创建你的路由页面&#xff0c;此处略了 2. 导航守卫拦截判断思路 // 创建路由 const router createRouter({history…

Python----字典练习

相关链接&#xff1a;Python---字典的增、删、改、查操作_python中字典的增删改查-CSDN博客 Python---字典---dict-CSDN博客 Python---引用变量与可变、非可变类型-CSDN博客 重点&#xff1a; 字典中的 key &#xff08;就是键&#xff09;可以是很多数据类型&#xff08;…

对比ProtoBuf和JSON的序列化和反序列化能力

1.序列化能力对比验证 在这里让我们分别使用PB与JSON的序列化与反序列化能力&#xff0c;对值完全相同的一份结构化数据进行不同次数的性能测试。 为了可读性&#xff0c;下面这一份文本使用JSON格式展示了需要被进行测试的结构化数据内容: {"age" : 20,"name…

SpringAMQP入门案例——接收消息

依赖 <!--SpringAMQP起步依赖--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> </dependency> yml配置文件 自行修改 spring:rabbitmq:host: 192.168.220.130 # …

Spring MVC学习随笔-控制器(Controller)开发详解:接受客户端(Client)请求参数

学习视频&#xff1a;孙哥说SpringMVC&#xff1a;结合Thymeleaf&#xff0c;重塑你的MVC世界&#xff01;&#xff5c;前所未有的Web开发探索之旅 第三章、SpringMVC控制器开发详解 3.1 核心要点 &#x1f4a1; 1. 接受客户端&#xff08;client&#xff09;请求参数[讲解] 2…

Linux脚本awk命令

目录 一. awk命令简介 1. awk版本 2. awk与vim的区别 3. awk与sed的区别 4. awk工作原理 5. awk格式 6. awk常用选项 二. awk基础用法 1. awk基础用法 2. BEGIN和END语句块 3. 指定分隔符 4. 首尾关键字 三. awk内置变量 1. FS变量 2. OFS变量 3. RS变量 4. NF…

【Unity动画】为一个动画片段添加事件Events

动画不管播放到那一帧&#xff0c;我们都可以在这里“埋伏”一个事件&#xff08;调用一个函数并且给函数传递一个参数&#xff0c;参数在外部设置&#xff0c;甚至传递一个物体&#xff09;&#xff01; 嗨&#xff0c;亲爱的Unity小伙伴们&#xff01;你是否曾想过为你的动画…

语言模型文本处理基石:Tokenizer简明概述

编者按&#xff1a;近年来&#xff0c;人工智能技术飞速发展&#xff0c;尤其是大型语言模型的问世&#xff0c;让 AI 写作、聊天等能力有了质的飞跃。如何更好地理解和利用这些生成式 AI&#xff0c;成为许多开发者和用户关心的问题。 今天&#xff0c;我们推出的这篇文章有助…