Java核心知识点整理大全26-笔记

news2024/11/16 17:58:56

目录

27. Storm

7.1.1. 概念

27.1.1. 集群架构

27.1.1.1. Nimbus(master-代码分发给 Supervisor)

27.1.1.2. Supervisor(slave-管理 Worker 进程的启动和终止)

27.1.1.3. Worker(具体处理组件逻辑的进程)

27.1.1.4. Task

27.1.1.5. ZooKeeper

27.1.2. 编程模型(spout->tuple->bolt)

27.1.2.1. Topology

27.1.2.2. Spout

27.1.2.3. Bolt

27.1.2.4. Tuple

27.1.2.5. Stream

27.1.3. Topology 运行

27.1.3.1. Worker(1 个 worker 进程执行的是 1 个 topology 的子集)

27.1.3.2. Executor(executor 是 1 个被 worker 进程启动的单独线程)

27.1.3.3. Task(最终运行 spout 或 bolt 中代码的单元)

27.1.4. Storm Streaming Grouping

27.1.4.1. huffle Grouping

27.1.4.2. Fields Grouping

27.1.4.3. All grouping :广播

27.1.4.4. Global grouping

27.1.4.5. None grouping :不分组

27.1.4.6. Direct grouping :直接分组 指定分组

28. YARN

28.1.1. 概念

28.1.2. ResourceManager

28.1.3. NodeManager

28.1.4. ApplicationMaster

28.1.5.YARN 运行流程

29. 机器学习

Java核心知识点整理大全24-笔记-CSDN博客

往期快速传送门👆(在文章最后):


27. Storm

7.1.1. 概念

Storm 是一个免费并开源的分布式实时计算系统。利用 Storm 可以很容易做到可靠地处理无限的 数据流,像 Hadoop 批量处理大数据一样,Storm 可以实时处理数据。

27.1.1. 集群架构

27.1.1.1. Nimbus(master-代码分发给 Supervisor)

Storm 集群的 Master 节点,负责分发用户代码,指派给具体的 Supervisor 节点上的 Worker 节 点,去运行 Topology 对应的组件(Spout/Bolt)的 Task。

27.1.1.2. Supervisor(slave-管理 Worker 进程的启动和终止)

Storm 集群的从节点,负责管理运行在 Supervisor 节点上的每一个 Worker 进程的启动和终止。 通过 Storm 的配置文件中的 supervisor.slots.ports 配置项,可以指定在一个 Supervisor 上最大 允许多少个 Slot,每个 Slot 通过端口号来唯一标识,一个端口号对应一个 Worker 进程(如果该 Worker 进程被启动)。

27.1.1.3. Worker(具体处理组件逻辑的进程)

运行具体处理组件逻辑的进程。Worker 运行的任务类型只有两种,一种是 Spout 任务,一种是 Bolt 任务。

27.1.1.4. Task

worker中每一个spout/bolt的线程称为一个task. 在storm0.8 之后,task不再与物理线程对应, 不同 spout/bolt 的 task 可能会共享一个物理线程,该线程称为 executor。

27.1.1.5. ZooKeeper

用来协调 Nimbus 和 Supervisor,如果 Supervisor 因故障出现问题而无法运行 Topology, Nimbus 会第一时间感知到,并重新分配 Topology 到其它可用的 Supervisor 上运行

27.1.2. 编程模型(spout->tuple->bolt)

strom 在运行中可分为 spout 与 bolt 两个组件,其中,数据源从 spout 开始,数据以 tuple 的方 式发送到 bolt,多个 bolt 可以串连起来,一个 bolt 也可以接入多个 spot/bolt.运行时原理如下图:

27.1.2.1. Topology

Storm 中运行的一个实时应用程序的名称。将 Spout、 Bolt 整合起来的拓扑图。定义了 Spout 和 Bolt 的结合关系、并发数量、配置等等

27.1.2.2. Spout

在一个 topology 中获取源数据流的组件。通常情况下 spout 会从外部数据源中读取数据,然后转 换为 topology 内部的源数据。

27.1.2.3. Bolt

接受数据然后执行处理的组件,用户可以在其中执行自己想要的操作。

27.1.2.4. Tuple

一次消息传递的基本单元,理解为一组消息就是一个 Tuple。

27.1.2.5. Stream

Tuple 的集合。表示数据的流向。

27.1.3. Topology 运行

在 Storm 中,一个实时应用的计算任务被打包作为 Topology 发布,这同 Hadoop MapReduce 任务相似。但是有一点不同的是:在 Hadoop 中,MapReduce 任务最终会执行完成后结束;而在 Storm 中,Topology 任务一旦提交后永远不会结束,除非你显示去停止任务。计算任务 Topology 是由不同的 Spouts 和 Bolts,通过数据流(Stream)连接起来的图。一个 Storm 在集 群上运行一个 Topology 时,主要通过以下 3 个实体来完成 Topology 的执行工作:

(1). Worker(进程)

(2). Executor(线程)

(3). Task

27.1.3.1. Worker(1 个 worker 进程执行的是 1 个 topology 的子集)

1 个 worker 进程执行的是 1 个 topology 的子集(注:不会出现 1 个 worker 为多个 topology 服务)。1 个 worker 进程会启动 1 个或多个 executor 线程来执行 1 个 topology 的 component(spout 或 bolt)。因此,1 个运行中的 topology 就是由集群中多台物理机上的多个 worker 进程组成的。

27.1.3.2. Executor(executor 是 1 个被 worker 进程启动的单独线程)

executor 是 1 个被 worker 进程启动的单独线程。每个 executor 只会运行 1 个 topology 的 1 个 component(spout 或 bolt)的 task(注:task 可以是 1 个或多个,storm 默认是 1 个 component 只生成 1 个 task,executor 线程里会在每次循环里顺序调用所有 task 实例)。

27.1.3.3. Task(最终运行 spout 或 bolt 中代码的单元)

是最终运行 spout 或 bolt 中代码的单元(注:1 个 task 即为 spout 或 bolt 的 1 个实例, executor 线程在执行期间会调用该 task 的 nextTuple 或 execute 方法)。topology 启动后,1 个 component(spout 或 bolt)的 task 数目是固定不变的,但该 component 使用的 executor 线 程数可以动态调整(例如:1 个 executor 线程可以执行该 component 的 1 个或多个 task 实 例)。这意味着,对于 1 个 component 存在这样的条件:#threads<=#tasks(即:线程数小于 等于 task 数目)。默认情况下 task 的数目等于 executor 线程数目,即 1 个 executor 线程只运 行 1 个 task。

27.1.4. Storm Streaming Grouping

Storm 中最重要的抽象,应该就是 Stream grouping 了,它能够控制 Spot/Bolt 对应的 Task 以 什么样的方式来分发 Tuple,将 Tuple 发射到目的 Spot/Bolt 对应的 Task.

目前,Storm Streaming Grouping 支持如下几种类型:

27.1.4.1. huffle Grouping

随机分组,尽量均匀分布到下游 Bolt 中将流分组定义为混排。这种混排分组意味着来自 Spout 的 输入将混排,或随机分发给此 Bolt 中的任务。shuffle grouping 对各个 task 的 tuple 分配的比 较均匀。

27.1.4.2. Fields Grouping

按字段分组,按数据中 field 值进行分组;相同 field 值的 Tuple 被发送到相同的 Task 这种 grouping 机制保证相同 field 值的 tuple 会去同一个 task。

27.1.4.3. All grouping :广播

广播发送, 对于每一个 tuple 将会复制到每一个 bolt 中处理。

27.1.4.4. Global grouping

全局分组,Tuple 被分配到一个 Bolt 中的一个 Task,实现事务性的 Topology。Stream 中的所 有的 tuple 都会发送给同一个 bolt 任务处理,所有的 tuple 将会发送给拥有最小 task_id 的 bolt 任务处理。

27.1.4.5. None grouping :不分组

不关注并行处理负载均衡策略时使用该方式,目前等同于 shuffle grouping,另外 storm 将会把 bolt 任务和他的上游提供数据的任务安排在同一个线程下。

27.1.4.6. Direct grouping :直接分组 指定分组

由 tuple 的发射单元直接决定 tuple 将发射给那个 bolt,一般情况下是由接收 tuple 的 bolt 决定 接收哪个 bolt 发射的 Tuple。这是一种比较特别的分组方法,用这种分组意味着消息的发送者指 定由消息接收者的哪个 task 处理这个消息。 只有被声明为 Direct Stream 的消息流可以声明这种 分组方法。而且这种消息 tuple 必须使用 emitDirect 方法来发射。消息处理者可以通过 TopologyContext 来获取处理它的消息的 taskid (OutputCollector.emit 方法也会返回 taskid)


28. YARN

28.1.1. 概念

YARN 是一个资源管理、任务调度的框架,主要包含三大模块:ResourceManager(RM)、 NodeManager(NM)、ApplicationMaster(AM)。其中,ResourceManager 负责所有资 源的监控、分配和管理; ApplicationMaster 负责每一个具体应用程序的调度和协调; NodeManager 负责每一个节点的维护。对于所有的 applications,RM 拥有绝对的控制权和对资 源的分配权。而每个 AM 则会和 RM 协商资源,同时和 NodeManager 通信来执行和监控 task。 几个模块之间的关系如图所示。

28.1.2. ResourceManager

1. ResourceManager 负责整个集群的资源管理和分配,是一个全局的资源管理系统。

2. NodeManager 以心跳的方式向 ResourceManager 汇报资源使用情况(目前主要是 CPU 和 内存的使用情况)。RM 只接受 NM 的资源回报信息,对于具体的资源处理则交给 NM 自己 处理。

3. YARN Scheduler 根据 application 的请求为其分配资源,不负责 application job 的监控、 追踪、运行状态反馈、启动等工作。

28.1.3. NodeManager

1. NodeManager 是每个节点上的资源和任务管理器,它是管理这台机器的代理,负责该节点 程序的运行,以及该节点资源的管理和监控。YARN集群每个节点都运行一个NodeManager。

2. NodeManager 定时向 ResourceManager 汇报本节点资源(CPU、内存)的使用情况和 Container 的运行状态。当 ResourceManager 宕机时 NodeManager 自动连接 RM 备用节 点。

3. NodeManager 接收并处理来自 ApplicationMaster 的 Container 启动、停止等各种请求。

28.1.4. ApplicationMaster

用户提交的每个应用程序均包含一个 ApplicationMaster,它可以运行在 ResourceManager 以外 的机器上。

1. 负责与 RM 调度器协商以获取资源(用 Container 表示)。

2. 将得到的任务进一步分配给内部的任务(资源的二次分配)。

3. 与 NM 通信以启动/停止任务。

4. 监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。

5. 当前 YARN 自带了两个 ApplicationMaster 实现,一个是用于演示 AM 编写方法的实例程序 DistributedShell,它可以申请一定数目的 Container 以并行运行一个 Shell 命令或者 Shell 脚本;另一个是运行 MapReduce 应用程序的 AM—MRAppMaster。

注:RM 只负责监控 AM,并在 AM 运行失败时候启动它。RM 不负责 AM 内部任务的容错,任务 的容错由 AM 完成。

28.1.5.YARN 运行流程

1. client 向 RM 提交应用程序,其中包括启动该应用的 ApplicationMaster 的必须信息,例如 ApplicationMaster 程序、启动 ApplicationMaster 的命令、用户程序等。

2. ResourceManager 启动一个 container 用于运行 ApplicationMaster。

3. 启动中的ApplicationMaster向ResourceManager注册自己,启动成功后与RM保持心跳。

4. ApplicationMaster 向 ResourceManager 发送请求,申请相应数目的 container。

5. ResourceManager 返回 ApplicationMaster 的申请的 containers 信息。申请成功的 container,由 ApplicationMaster 进行初始化。container 的启动信息初始化后,AM 与对 应的 NodeManager 通信,要求 NM 启动 container。AM 与 NM 保持心跳,从而对 NM 上 运行的任务进行监控和管理。

6. container 运行期间,ApplicationMaster 对 container 进行监控。container 通过 RPC 协议 向对应的 AM 汇报自己的进度和状态等信息。

7. 应用运行期间,client 直接与 AM 通信获取应用的状态、进度更新等信息。

8. 应用运行结束后,ApplicationMaster 向 ResourceManager 注销自己,并允许属于它的


container 被收回。

29. 机器学习

29.1.1. 决策树

29.1.2. 随机森林算法

29.1.3. 逻辑回归

29.1.4. SVM

29.1.5. 朴素贝叶斯

29.1.6. K 最近邻算法

29.1.7. K 均值算法

29.1.8. Adaboost 算法

29.1.9. 神经网络

29.1.10. 马尔可夫


Java核心知识点整理大全24-笔记-CSDN博客
往期快速传送门👆(在文章最后):

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1276947.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

周报:浅谈对豆瓣网页实战的注意事项

制作整体网页时HTML代码和CSS代码的常用处理方法&#xff1a; 分开HTML代码和CSS代码&#xff0c;专门制作一个CSS文件专门来放置css代码&#xff0c;css文件里一般有作者样式(XXX.css)和通用样式(common.css)。这样会使代码更易维护&#xff0c;且整齐美观。 写代码前的注意…

HT81298 集成免滤波器调制D类音频功放

HT81298是一款内置升压的立体声D类音频功率放大器&#xff0c;HT81298内部集成免滤波器调制技术&#xff0c; 能够直接驱动扬声器&#xff0c;内置的关断功能使待机 电流Z小化&#xff0c;还集成了输出端过流保护、片内 过温保护、输入电源欠压异常保护、升压电压 过压保护等功…

TextToSpeech类学习和简单封装

TextToSpeech类简单学习封装 前言一、TTS是什么&#xff1f;二、TextToSpeech简单使用1.官方介绍2.简单使用 三、TextToSpeech简单封装总结 前言 业务涉及到对接TTS相关&#xff0c;所以简单学习下如何使用。 一、TTS是什么&#xff1f; TextToSpeech简称为TTS&#xff0c;即…

在 SQL Server 中备份和恢复数据库的最佳方法

在SQL Server中&#xff0c;创建备份和执行还原操作对于确保数据完整性、灾难恢复和数据库维护至关重要。以下是备份和恢复过程的概述&#xff1a; 方法 1. 使用 SQL Server Management Studio (SSMS) 备份和还原数据库 按照 SSMS 步骤备份 SQL 数据库 打开 SSMS 并连接到您…

【数据结构和算法】找出叠涂元素

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 三、代码 四、复杂度分析 前言 这是力扣的2661题&#xff0c;难度为中等&#xff0c;解题方案有很多种&…

LeNet对MNIST 数据集中的图像进行分类--keras实现

我们将训练一个卷积神经网络来对 MNIST 数据库中的图像进行分类&#xff0c;可以与前面所提到的CNN实现对比CNN对 MNIST 数据库中的图像进行分类-CSDN博客 加载 MNIST 数据库 MNIST 是机器学习领域最著名的数据集之一。 它有 70,000 张手写数字图像 - 下载非常简单 - 图像尺…

规则引擎专题---2、开源规则引擎对比

开源规则引擎 开源的规则引擎整体分为下面几类&#xff1a; 通过界面配置的成熟规则引擎&#xff0c;这种规则引擎相对来说就比较重&#xff0c;但功能全&#xff0c;比较出名的有:drools, urule。 基于jvm脚本语言&#xff0c;互联网公司会觉得drools太重了&#xff0c;然后…

用100ask 6ull配合 飞凌 elf1的教程进行学习的记录

启动方式 百问网 elf1: 固件 emmc-otg 串口 网络 改eth0, 网线接在右边的网口eth2上

spring boot mybatis TypeHandler 看源码如何初始化及调用

目录 概述使用TypeHandler使用方式在 select | update | insert 中加入 配置文件中指定 源码分析配置文件指定Mapper 执行query如何转换 结束 概述 阅读此文 可以达到 spring boot mybatis TypeHandler 源码如何初始化及如何调用的。 spring boot 版本为 2.7.17&#xff0c;my…

触控板绘画工具Inklet mac功能介绍

Inklet mac是一款触控板绘画工具&#xff0c;把你的触控板变成画画的板子&#xff0c;意思是&#xff0c;你点在触控板的哪里&#xff0c;鼠标就会出现载相应的地方。例如&#xff0c;但你把手指移动到触控盘左下角&#xff0c;那么鼠标也会出现在左下角&#xff0c;对于用户而…

【已解决】Cannot find project Scala library 2.11.8 for module XXX

问题描述 在 flink 示例程序调试过程中&#xff0c;reload project 报错 Cannot find project Scala library 2.11.8 for module HbasePrint 报错如下图所示&#xff1a; 问题解决 经过搜索&#xff0c;初步判定是 pom 文件中 Scala 版本配置和项目中实际使用的版本不一致导…

11.29 知识回顾(视图层、模板层)

一、视图层 1.1 响应对象 响应---》本质都是 HttpResponse -HttpResponse---》字符串 -render----》放个模板---》模板渲染是在后端完成 -js代码是在客户端浏览器里执行的 -模板语法是在后端执行的 -redirect----》重定向 -字符串参数不是…

RabbitMq整合Springboot超全实战案例+图文演示+源码自取

目录 介绍 简单整合 简单模式 定义 代码示例 work模式 定义 代码示例 pubsub模式 定义 代码示例 routing模式 定义 代码示例 top模式 定义 代码 下单付款加积分示例 介绍 代码 可靠性投递示例 介绍 代码 交换机投递确认回调 队列投递确认回调 ​延迟消…

前缀和 LeetCode1094 拼车

1094. 拼车 车上最初有 capacity 个空座位。车 只能 向一个方向行驶&#xff08;也就是说&#xff0c;不允许掉头或改变方向&#xff09; 给定整数 capacity 和一个数组 trips , trip[i] [numPassengersi, fromi, toi] 表示第 i 次旅行有 numPassengersi 乘客&#xff0c;接…

抖音怎么一次性隐藏全部视频

很多朋友不知道抖音怎么一次性隐藏全部视频&#xff0c;其实只需要在设置菜单中将账号设置为【私密账号】即可&#xff0c;在抖音中依次点击【设置】-【我】-【隐私设置】-【私密账号】&#xff0c;在弹出的窗口中将账号设为私密即可。也可以依次打开抖音作品&#xff0c;点击底…

golang Pool实战与底层实现

使用的go版本为 go1.21.2 首先我们写一个简单的Pool的使用代码 package mainimport "sync"var bytePool sync.Pool{New: func() interface{} {b : make([]byte, 1024)return &b}, }func main() {for j : 0; j < 10; j {obj : bytePool.Get().(*[]byte) // …

解决element ui tree组件不产生横向滚动条

结果是这样的 需要在tree的外层&#xff0c;包一个父组件 <div class"tree"><el-tree :data"treeData" show-checkbox default-expand-all></el-tree></div> 在css里面这样写,样式穿透按自己使用的css编译器以及框架要求就好 &l…

SQL Server 2016(创建数据库)

1、实验环境。 某公司有一台已经安装了SQL Server 2016的服务器&#xff0c;现在需要新建数据库。 2、需求描述。 创建一个名为"db_class"的数据库&#xff0c;数据文件和日志文件初始大小设置为10MB&#xff0c;启用自动增长&#xff0c;数据库文件存放路径为C:\db…

文献速递:人工智能在健康和医学中

人工智能在健康和医学中 01 文献速递介绍 这篇文章详细探讨了人工智能&#xff08;AI&#xff09;在医学领域的最新进展、挑战和未来发展的机遇。 1.医学AI算法的最新进展&#xff1a; **AI在医疗实践中的应用&#xff1a;**虽然AI系统在多项回顾性医学研究中表现出色&…

docker 搭建开发环境,解决deepin依赖问题

本机环境&#xff1a; deepin v23b2 删除docker旧包 sudo apt-get remove docker docker-engine docker.io containerd runc注意卸载docker旧包的时候Images, containers, volumes, 和networks 都保存在 /var/lib/docker 卸载的时候不会自动删除这块数据&#xff0c;如果你先…