数据结构与算法之美学习笔记:29 | 堆的应用:如何快速获取到Top 10最热门的搜索关键词?

news2024/11/18 14:24:26

目录

  • 前言
  • 堆的应用一:优先级队列
  • 堆的应用二:利用堆求 Top K
  • 堆的应用三:利用堆求中位数
  • 解答开篇
  • 内容小结

前言

在这里插入图片描述
本节课程思维导图:
在这里插入图片描述
搜索引擎的热门搜索排行榜功能你用过吗?搜索引擎每天会接收大量的用户搜索请求,它会把这些用户输入的搜索关键词记录下来,然后再离线地统计分析,得到最热门的 Top 10 搜索关键词。
那请你思考下,假设现在我们有一个包含 10 亿个搜索关键词的日志文件,如何能快速获取到热门榜 Top 10 的搜索关键词呢?
这个问题就可以用堆来解决,今天我们就来讲一讲,堆这种数据结构几个非常重要的应用:优先级队列、求 Top K 和求中位数。

堆的应用一:优先级队列

优先级队列,顾名思义,它首先应该是一个队列。在优先级队列中,数据的出队顺序不是先进先出,而是按照优先级来,优先级最高的,最先出队。

如何实现一个优先级队列呢?一个堆就可以看作一个优先级队列。很多时候,它们只是概念上的区分而已。往优先级队列中插入一个元素,就相当于往堆中插入一个元素;从优先级队列中取出优先级最高的元素,就相当于取出堆顶元素。

优先级队列的应用场景非常多。比如,赫夫曼编码、图的最短路径、最小生成树算法等等。不仅如此,很多语言中,都提供了优先级队列的实现,比如,Java 的 PriorityQueue,C++ 的 priority_queue 等。
现在,我举两个具体的例子,让你感受一下优先级队列具体是怎么用的。

  1. 合并有序小文件

假设我们有 100 个小文件,每个文件的大小是 100MB,每个文件中存储的都是有序的字符串。我们希望将这些 100 个小文件合并成一个有序的大文件。这里就会用到优先级队列。
这里就可以用到优先级队列,也可以说是堆。我们将从小文件中取出来的字符串放入到小顶堆中,那堆顶的元素,也就是优先级队列队首的元素,就是最小的字符串。我们将这个字符串放入到大文件中,并将其从堆中删除。然后再从小文件中取出下一个字符串,放入到堆中。循环这个过程,就可以将 100 个小文件中的数据依次放入到大文件中。删除堆顶数据和往堆中插入数据的时间复杂度都是 O(logn),n 表示堆中的数据个数,这里就是 100。

  1. 高性能定时器
    假设我们有一个定时器,定时器中维护了很多定时任务,每个任务都设定了一个要触发执行的时间点。定时器每过一个很小的单位时间(比如 1 秒),就扫描一遍任务,看是否有任务到达设定的执行时间。如果到达了,就拿出来执行。

在这里插入图片描述
针对这些问题,我们就可以用优先级队列来解决。我们按照任务设定的执行时间,将这些任务存储在优先级队列中,队列首部(也就是小顶堆的堆顶)存储的是最先执行的任务。它拿队首任务的执行时间点,与当前时间点相减,得到一个时间间隔 T。这个时间间隔 T 就是,从当前时间开始,需要等待多久,才会有第一个任务需要被执行。这样,定时器就可以设定在 T 秒之后,再来执行任务。当 T 秒时间过去之后,定时器取优先级队列中队首的任务执行。然后再计算新的队首任务的执行时间点与当前时间点的差值,把这个值作为定时器执行下一个任务需要等待的时间。

堆的应用二:利用堆求 Top K

我们现在来看,堆的另外一个非常重要的应用场景,那就是“求 Top K 问题”。
我把这种求 Top K 的问题抽象成两类。一类是针对静态数据集合,也就是说数据集合事先确定,不会再变。另一类是针对动态数据集合,也就是说数据集合事先并不确定,有数据动态地加入到集合中。

针对静态数据,如何在一个包含 n 个数据的数组中,查找前 K 大数据呢?我们可以维护一个大小为 K 的小顶堆,顺序遍历数组,从数组中取出数据与堆顶元素比较。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理,继续遍历数组。这样等数组中的数据都遍历完之后,堆中的数据就是前 K 大数据了。

针对动态数据求得 Top K 就是实时 Top K。一个数据集合中有两个操作,一个是添加数据,另一个询问当前的前 K 大数据。
实际上,我们可以一直都维护一个 K 大小的小顶堆,当有数据被添加到集合中时,我们就拿它与堆顶的元素对比。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理。这样,无论任何时候需要查询当前的前 K 大数据,我们都可以立刻返回给他。

堆的应用三:利用堆求中位数

现在我们来讲下,如何求动态数据集合中的中位数。
中位数,顾名思义,就是处在中间位置的那个数。如果数据的个数是奇数,把数据从小到大排列,那第 n/2 +1 个数据就是中位数;如果数据的个数是偶数的话,那处于中间位置的数据有两个,第 n/2​ 个和第 n/2​+1 个数据,这个时候,我们可以随意取一个作为中位数,比如取两个数中靠前的那个,就是第 n/2 个数据。
在这里插入图片描述
对于一组静态数据,中位数是固定的,我们可以先排序,第 n/2​ 个数据就是中位数。每次询问中位数的时候,我们直接返回这个固定的值就好了。如果我们面对的是动态数据集合,借助堆这种数据结构,我们不用排序,就可以非常高效地实现求中位数操作。我们来看看,它是如何做到的?
我们需要维护两个堆,一个大顶堆,一个小顶堆。大顶堆中存储前半部分数据,小顶堆中存储后半部分数据,且小顶堆中的数据都大于大顶堆中的数据。
也就是说,如果有 n 个数据,n 是偶数,我们从小到大排序,那前 n/2 个数据存储在大顶堆中,后 2n​ 个数据存储在小顶堆中。这样,大顶堆中的堆顶元素就是我们要找的中位数。如果 n 是奇数,情况是类似的,大顶堆就存储n/2+1 个数据,小顶堆中就存储 n/2 个数据。
在这里插入图片描述
数据是动态变化的,当新添加一个数据的时候,我们如何调整两个堆,让大顶堆中的堆顶元素继续是中位数呢?如果新加入的数据小于等于大顶堆的堆顶元素,我们就将这个新数据插入到大顶堆;否则,我们就将这个新数据插入到小顶堆。
这个时候就有可能出现,两个堆中的数据个数不符合前面约定的情况:如果 n 是偶数,两个堆中的数据个数都是 n/2​;如果 n 是奇数,大顶堆有n/2​+1 个数据,小顶堆有 n/2​ 个数据。这个时候,我们可以从一个堆中不停地将堆顶元素移动到另一个堆,通过这样的调整,来让两个堆中的数据满足上面的约定。
在这里插入图片描述
于是,我们就可以利用两个堆,一个大顶堆、一个小顶堆,实现在动态数据集合中求中位数的操作。插入数据因为需要涉及堆化,所以时间复杂度变成了 O(logn),但是求中位数我们只需要返回大顶堆的堆顶元素就可以了,所以时间复杂度就是 O(1)。
实际上,利用两个堆不仅可以快速求出中位数,还可以快速求其他百分位的数据,原理是类似的。“如何快速求接口的 99% 响应时间?”我们现在就来看下,利用两个堆如何来实现。
,我先解释一下,什么是“99% 响应时间”?99 百分位数的概念可以类比中位数,如果将一组数据从小到大排列,这个 99 百分位数就是大于前面 99% 数据的那个数据。
在这里插入图片描述
我们维护两个堆,一个大顶堆,一个小顶堆。假设当前总数据的个数是 n,大顶堆中保存 n99% 个数据,小顶堆中保存 n1% 个数据。大顶堆堆顶的数据就是我们要找的 99% 响应时间。
每次插入一个数据的时候,我们要判断这个数据跟大顶堆和小顶堆堆顶数据的大小关系,然后决定插入到哪个堆中。如果这个新插入的数据比大顶堆的堆顶数据小,那就插入大顶堆;反之则插入小顶堆。
但是,为了保持大顶堆中的数据占 99%,小顶堆中的数据占 1%,在每次新插入数据之后,我们都要重新计算,这个时候大顶堆和小顶堆中的数据个数,是否还符合 99:1 这个比例。如果不符合,我们就将一个堆中的数据移动到另一个堆,直到满足这个比例。

解答开篇

假设现在我们有一个包含 10 亿个搜索关键词的日志文件,如何快速获取到 Top 10 最热门的搜索关键词呢?如果我们将处理的场景限定为单机,可以使用的内存为 1GB。那这个问题该如何解决呢?

我们创建 10 个空文件 00,01,02,……,09。我们遍历这 10 亿个关键词,并且通过某个哈希算法对其求哈希值,然后哈希值同 10 取模,得到的结果就是这个搜索关键词应该被分到的文件编号。对这 10 亿个关键词分片之后,每个文件都只有 1 亿的关键词,去除掉重复的,可能就只有 1000 万个,每个关键词平均 50 个字节,所以总的大小就是 500MB。1GB 的内存完全可以放得下。
我们针对每个包含 1 亿条搜索关键词的文件,利用散列表和堆,分别求出 Top 10。
具体我们选用散列表。我们就分别扫描这 10个文件。当扫描到某个关键词时,我们去散列表中查询。如果存在,我们就将对应的次数加一;如果不存在,我们就将它插入到散列表,并记录次数为 1。这样我们就能得到每个文件中关键词的个数;我们再根据前面讲的用堆求 Top K 的方法,建立一个大小为 10 的小顶堆,遍历散列表,依次取出每个搜索关键词及对应出现的次数,然后与堆顶的搜索关键词对比。如果出现次数比堆顶搜索关键词的次数多,那就删除堆顶的关键词,将这个出现次数更多的关键词加入到堆中。以此类推,当遍历完整个散列表中的搜索关键词之后,我们就得到100 个使用次数最多的关键词,然后取这 100 个关键词中,出现次数最多的 10 个关键词,这就是这 10 亿数据中的 Top 10 最频繁的搜索关键词了。

内容小结

我们今天主要讲了堆的几个重要的应用,它们分别是:优先级队列、求 Top K 问题和求中位数问题。
优先级队列是一种特殊的队列,优先级高的数据先出队,而不再像普通的队列那样,先进先出。实际上,堆就可以看作优先级队列,只是称谓不一样罢了。
求 Top K 问题又可以分为针对静态数据和针对动态数据,只需要利用一个堆,就可以做到非常高效率地查询 Top K 的数据。
求中位数实际上还有很多变形,比如求 99 百分位数据、90 百分位数据等,处理的思路都是一样的,即利用两个堆,一个大顶堆,一个小顶堆,随着数据的动态添加,动态调整两个堆中的数据,最后大顶堆的堆顶元素就是要求的数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1276297.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32内部温度传感器使用方法详解

STM32内部温度传感器使用方法详解 前言 STM32内部集成了一个片上温度传感器,可以用来测量MCU及周围的温度。测量范围:-40~125,精度1.5℃。虽然精度不高,但在某些应用场景下是够了的,相比于外部接入传感器&#xff0c…

HarmonyOS ArkTS与c++交互通信

一、创建Native C Module 1、右键项目->new->module 如图: 2、修改build-profile.json5配置 "externalNativeOptions": {"path": "./src/main/cpp/CMakeLists.txt","arguments": "-v -DOHOS_STLc_shared&quo…

集成开发环境 PyCharm 的安装【侯小啾python领航班系列(二)】

集成开发环境PyCharm的安装【侯小啾python领航计划系列(二)】 大家好,我是博主侯小啾, 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹…

【EMFace】《EMface: Detecting Hard Faces by Exploring Receptive Field Pyramids》

arXiv-2021 文章目录 1 Background and Motivation2 Related Work3 Advantages / Contributions4 Method5 Experiments5.1 Datasets and Metrics5.2 Ablation Study5.3 Comparison with State-of-the-Arts 6 Conclusion(own) 1 Background and Motivatio…

flutter-一个可以输入的数字增减器

效果 参考文章 代码 在参考文章上边,主要是改了一下样式,逻辑也比较清楚,对左右两边添加增减方法。 我在此基础上加了_numcontroller 输入框的监听。 加了数字输入框的控制 keyboardType: TextInputType.number, //设置键盘为数字 inputF…

MySQL 基础、进阶、运维的学习笔记

1. MySQL 基础篇 1.1 MySQL 概述 1.1.1 数据库相关概念 数据库(Database, 简称 DB): 存储数据的仓库,数据是有组织的进行存储。 数据库管理系统(Database Management System, 简称 DBMS): 操作和管理数据库的大型软件。 SQL(Structured Query Language, 简称 S…

高并发下缓存失效问题-缓存穿透、缓存击穿、缓存雪崩、Redis分布式锁简单实现、Redisson实现分布式锁

文章目录 缓存基本使用范式暴露的几个问题缓存失效问题---缓存穿透缓存失效问题---缓存击穿一、单机锁正确的锁粒度不正确的锁粒度无法保证查询数据库次数是唯一 二、分布式锁getCatalogJsonData()分布式锁演进---基本原理分布式锁(加锁)演进一:删锁失败导致死锁分布…

『IDEA』代码热部署和热加载

前言 在日常开发中,我们需要经常修改 Java 代码,手动重启项目,查看修改后的效果。如果在项目小时,重启速度比较快,等待的时间是较短的。但是随着项目逐渐变大,重启的速度变慢,等待时间 1-2 min…

第一届云南大学CTF校赛YNUCTF-PWN提示(hint)

文章目录 easy-ikun四种方法 black_ikunsyscall-ikunikun-runner_记第一次校赛出题如何运行服务器?保存镜像 easy-ikun s[i:j] 表示获取a[i]到a[j-1] s[:-1]去掉最后一个字符 s[:-n]去掉最后n个字符 s[-2:]取最后两个字符 s[i:j:k]这种格式呢,i,j与上面的一样&…

android https 证书过期

有的时候 我们android https 证书过期 ,或者使用明文等方式去访问服务器 可能会碰到类似的 问题 : javax.net.ssl.SSLHandshakeException: Chain validation failed java.security.cert.CertPathValidatorException: Response is unreliable: its validi…

Pandas进阶:文本处理

引言 文本的主要两个类型是string和object。如果不特殊指定类型为string,文本类型一般为object。 文本的操作主要是通过访问器str 来实现的,功能十分强大,但使用前需要注意以下几点。 访问器只能对Series数据结构使用。 除了常规列变量df.c…

Python 高性能 web 框架 - FastApi 全面指南

原文:Python 高性能 web 框架 - FastApi 全面指南 - 知乎 一、简介 FastAPI 是一个用于构建 API 的现代、快速(高性能)的 web 框架,使用 Python 3.6 并基于标准的 Python 类型提示。 它具有如下这些优点: 快速&…

【Geoserver】SLD点位样式(PointSymbolizer)设计全通

SLD文件可以控制geoserver的样式管理,这里专门针对点位进行设计,首先点位的设计需要用到这面这个大标签 之前的项目中已经用到了很多关于面的样式管理,这里新学习的是关于点的样式管理 PointSymbolizer 参考资料地址:https://doc…

基于hadoop下的hbase安装

简介 HBase是一个分布式的、面向列的开源数据库,该技术来源于Fay Chang所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,…

机器人导航地图——Obstacle层的障碍物-Bresenham算法详细解释

文章目录 前言一、Bresenham算法源码解析1. 函数raytraceFreespace2. 函数inline void raytraceLine3. 函数bresenham2D 二、Bresenham算法——C代码实现总结 前言 作者在读源代码时,遇到了下述的代码void ObstacleLayer::raytraceFreespace,不是很好理…

股票要怎么买入卖出?

股票账户终于开好了!恭喜你马上就可以开启刺激的炒股之旅了!不过第一次买股票的你是不是还不知道怎么个买法呢?别担心~贴心的汇小鲸带着教程来了,咱们一起看看吧! 首先一点,大家得知道:开好户还…

速通MySql

一、简介 1、什么是数据库 数据仓库,用来存储数据。访问必须用SQL语句来访问 2、数据库的类型 1、关系型数据库:Oracle、DB2、Microsoft SQL Server、Microsoft Access、MySQL等 可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询&#…

Postman如何导入和导出接口文件

本文介绍2种导出和导入的操作方法:一种是分享链接,导入链接的方式(需要登录);另一种是导出json文件,再次导入。下面将详细介绍。 由于第一种分享链接,导入链接的方式需要登录,所以推…

项目实战之RabbitMQ死信队列应用

🧑‍💻作者名称:DaenCode 🎤作者简介:啥技术都喜欢捣鼓捣鼓,喜欢分享技术、经验、生活。 😎人生感悟:尝尽人生百味,方知世间冷暖。 文章目录 🌟架构图&#x…

开源 LLM 安全扫描器

Vigil 是一款开源安全扫描程序,可检测即时注入、越狱以及对大型语言模型(LLM) 的其他潜在威胁。 当攻击者使用专门设计的输入成功影响 LLM 时,就会出现即时注入。这导致 LLM 无意中实现了攻击者设定的目标。 ​ 我对 LLM 的可能性感到非常兴奋&#xff…