第一题: 寻找满足特定条件的 e;
第一步:
第二步:
由式1.7知,给定e,p,q,就可计算出相应的RSA不动点的数目。因此设计算法步骤如下:
- 枚举找出所有与φ(n)互素的e。
- 枚举所有满足条件的e,计算RSA不动点的数目。
- 以RSA不动点的数目为键,累加变量为值,将每次的结果添加到字典中。
- 最后输出最小值的键对应的累加值。
代码以及运行结果如下,结果为399788195976:
import math
from collections import defaultdict
from tqdm import tqdm
def are_coprime(a, b):
return math.gcd(a, b) == 1
p = 1009
q = 3643
n = p * q
phi = (p - 1) * (q - 1)
e_can = []
H = defaultdict(int)
for e in tqdm(range(1, phi)):
if are_coprime(e, phi):
e_can.append(e)
print('*'*50)
for e in tqdm(e_can):
cnt = (1 + math.gcd(e-1, p-1))*(1 + math.gcd(e-1, q-1))
H[cnt] += e
print(f'keyword: {H.keys()} and correspoding sum: {H[min(H.keys())]}')
第二题:
按部就班实现即可,其中求逆元用拓展欧几里得定理。
代码和运行结果如下:
import sympy
import binascii
def exgcd(a, b):
if a == 0:
return b, 0, 1
else:
gcd, x, y = exgcd(b % a, a)
return gcd, y - (b // a) * x, x
def mod_inverse(a, m):
gcd, x, _ = exgcd(a, m)
if gcd != 1:
raise Exception('Modular inverse does not exist')
else:
return x % m
def invmod(e, phi):
'''
>>> invmod(17, 3120)
2753
>>> invmod(3, 20)
7
'''
return mod_inverse(e, phi)
def encrypt(m: int, e: int, n: int) -> int:
'''
>>> encrypt(5, 3, 33)
26
'''
return pow(m, e, n)
def decrypt(c: int, d: int, n: int) -> int:
'''
>>> decrypt(26, 7, 33)
5
'''
return pow(c, d, n)
def str2hex(s):
'''
>>> str2hex("Hello, World!")
'48656c6c6f2c20576f726c6421'
'''
return binascii.hexlify(s.encode()).decode()
def encstring(m: str, e: int, n: int) -> int:
hexstr = str2hex(m)
return encrypt(int(hexstr, 16), e, n)
p, q = sympy.randprime(2**128, 2**256), sympy.randprime(2**128, 2**256)
# p, q = 3, 11
n = p * q
phi = (p - 1) * (q - 1)
e = 3
e = 65537
assert(exgcd(e, phi)[0] == 1)
d = invmod(e, phi)
public = (e, phi)
private = (d, n)
test = 10
assert(test == decrypt(encrypt(test, e, n), d, n))
test = "Hello, World!"
assert(int(str2hex(test), 16) == decrypt(encstring(test, e, n), d, n))
print("test pass!")