深度学习手势检测与识别算法 - opencv python 计算机竞赛

news2024/12/26 11:15:49

文章目录

  • 0 前言
  • 1 实现效果
  • 2 技术原理
    • 2.1 手部检测
      • 2.1.1 基于肤色空间的手势检测方法
      • 2.1.2 基于运动的手势检测方法
      • 2.1.3 基于边缘的手势检测方法
      • 2.1.4 基于模板的手势检测方法
      • 2.1.5 基于机器学习的手势检测方法
    • 3 手部识别
      • 3.1 SSD网络
      • 3.2 数据集
      • 3.3 最终改进的网络结构
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像识别手势检测识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 实现效果

废话不多说,先看看学长实现的效果吧
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 技术原理

2.1 手部检测

主流的手势分割方法主要分为静态手势分割和动态手势分割两大类方法。

  • 静态手势分割方法: 单张图片利用手和背景的差异进行分割,

  • 动态手势分割方法: 利用了视频帧序列的信息来分割。

2.1.1 基于肤色空间的手势检测方法

肤色是手和其他背景最明显的区分特征,手的颜色范围较统一并且有聚类性,基于肤色的分割方法还有处理速度快,对旋转、局部遮挡、姿势变换具有不变性,因此利用不同的颜色空间来进行手势分割是现在最常用的方法。

肤色分割的方法主要有以下几种:基于参数、非参数的显式肤色聚类方法。参数模型使用高斯颜色分布,非参数模型则是从训练数据中获得肤色直方图来对肤色区间进行估计。肤色聚类显式地在某个特定的颜色空间中定义了肤色的边界,广义上看是一种静态的肤色滤波器,如Khan根据检测到的脸部提出了一种自适应的肤色模型。

肤色是一种低级的特征,对计算的消耗很少,感知上均匀的颜色空间如CIELAB,CIELUV等已经被用于进行肤色检测。正交的颜色空间如,YCbCr,YCgCr,YIQ,YUV等也被用与肤色分割,如Julilian等使用YCrCb颜色空间,利用其中的CrCb分量来建立高斯模型进行分割。使用肤色分割的问题是误检率非常高,所以需要通过颜色校正,图像归一化等操作来降低外界的干扰,提高分割的准确率。

基于YCrCb颜色空间Cr, Cb范围筛选法手部检测,实现代码如下:

# 肤色检测之二: YCrCb中 140<=Cr<=175 100<=Cb<=120
img = cv2.imread(imname, cv2.IMREAD_COLOR)
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) # 把图像转换到YUV色域
(y, cr, cb) = cv2.split(ycrcb) # 图像分割, 分别获取y, cr, br通道分量图像

skin2 = np.zeros(cr.shape, dtype=np.uint8) # 根据源图像的大小创建一个全0的矩阵,用于保存图像数据
(x, y) = cr.shape # 获取源图像数据的长和宽

# 遍历图像, 判断Cr和Br通道的数值, 如果在指定范围中, 则置把新图像的点设为255,否则设为0
for i in  range(0, x): 
	for j in  range(0, y):
		if (cr[i][j] >  140) and (cr[i][j] <  175) and (cb[i][j] >  100) and (cb[i][j] <  120):
			skin2[i][j] =  255
		else:
			skin2[i][j] =  0

cv2.imshow(imname, img)
cv2.imshow(imname +  " Skin2 Cr+Cb", skin2)

检测效果:

在这里插入图片描述
在这里插入图片描述

2.1.2 基于运动的手势检测方法

基于运动的手势分割方法将运动的前景和静止的背景分割开,主要有背景差分法、帧间差分法、光流法等。

帧间差分选取视频流中前后相邻的帧进行差分,设定一定的阈值来区分前景和后景,从而提取目标物体。帧差法原理简单,计算方便且迅速,但是当前后景颜色相同时检测目标会不完整,静止目标则无法检测。

背景差分需要建立背景图,利用当前帧和背景图做差分,从而分离出前后景。背景差分在进行目标检测中使用较多。有基于单高斯模型,双高斯模型的背景差分,核密度估计法等。景差分能很好的提取完整的目标,但是受环境变化的影响比较大,因此需要建立稳定可靠的背景模型和有效的背景更新方法。

1, 读取摄像头
2, 背景减除
fgbg1 = cv.createBackgroundSubtractorMOG2(detectShadows=True)
fgbg2 = cv.createBackgroundSubtractorKNN(detectShadows=True)
# fgmask = fgbg1.apply(frame)
fgmask = fgbg2.apply(frame) # 两种方法
3, 将没帧图像转化为灰度图像 在高斯去噪 最后图像二值化
gray = cv.cvtColor(res, cv.COLOR_BGR2GRAY)
blur = cv.GaussianBlur(gray, (11, 11), 0)
ret, binary = cv.threshold(blur, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
4, 选取手部的 ROI 区域 绘制轮廓
gesture = dst[50:600, 400:700]
contours, heriachy = cv.findContours(gesture, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # 获取轮廓本身
for i, contour in enumerate(contours): # 获取轮廓
cv.drawContours(frame, contours, i, (0, 0, 255), -1) # 绘制轮廓
print(i)

在这里插入图片描述

2.1.3 基于边缘的手势检测方法

基于边缘的手势分割方法利用边缘检测算子在图像中计算出图像的轮廓,常用来进行边缘检测的一阶算子有(Roberts算子,Prewitt算子,Sobel算子,Canny算子等),二阶算子则有(Marr-
Hildreth算子,Laplacian算子等),这些算子在图像中找到手的边缘。但是边缘检测对噪声比较敏感,因此精确度往往不高。

边缘检测代码示例:

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import scipy.signal as signal     # 导入sicpy的signal模块

# Laplace算子
suanzi1 = np.array([[0, 1, 0],  
                    [1,-4, 1],
                    [0, 1, 0]])

# Laplace扩展算子
suanzi2 = np.array([[1, 1, 1],
                    [1,-8, 1],
                    [1, 1, 1]])

# 打开图像并转化成灰度图像
image = Image.open("pika.jpg").convert("L")
image_array = np.array(image)

# 利用signal的convolve计算卷积
image_suanzi1 = signal.convolve2d(image_array,suanzi1,mode="same")
image_suanzi2 = signal.convolve2d(image_array,suanzi2,mode="same")

# 将卷积结果转化成0~255
image_suanzi1 = (image_suanzi1/float(image_suanzi1.max()))*255
image_suanzi2 = (image_suanzi2/float(image_suanzi2.max()))*255

# 为了使看清边缘检测结果,将大于灰度平均值的灰度变成255(白色)
image_suanzi1[image_suanzi1>image_suanzi1.mean()] = 255
image_suanzi2[image_suanzi2>image_suanzi2.mean()] = 255

# 显示图像
plt.subplot(2,1,1)
plt.imshow(image_array,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,3)
plt.imshow(image_suanzi1,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,4)
plt.imshow(image_suanzi2,cmap=cm.gray)
plt.axis("off")
plt.show()

2.1.4 基于模板的手势检测方法

基于模版的手势分割方法需要建立手势模版数据库,数据库记录了不同手势不同场景下的手势模版。计算某个图像块和数据库中各个手势的距离,然后使用滑动窗遍历整幅图像进行相同的计算,从而在图像正确的位置找到数据库中的最佳匹配。模版匹配对环境和噪声鲁棒,但是数据库需要涵盖各种手型、大小、位置、角度的手势,并且因为需要遍历整个图像进行相同的计算,实时性较差。

2.1.5 基于机器学习的手势检测方法

贝叶斯网络,聚类分析,高斯分类器等等也被用来做基于肤色的分割。随机森林是一种集成的分类器,易于训练并且准确率较高,被用在分割和手势识别上。建立肤色分类的模型,并且使用随机森林对像素进行分类,发现随机森林得到的分割结果比上述的方法都要准确.

3 手部识别

毫无疑问,深度学习做图像识别在准确度上拥有天然的优势,对手势的识别使用深度学习卷积网络算法效果是非常优秀的。

3.1 SSD网络

SSD网络是2016年提出的卷积神经网络,其在物体检测上取得了很好的效果。SSD网络和FCN网络一样,最终的预测结果利用了不同尺度的特征图信息,在不同尺度的特征图上进行检测,大的特征图可以检测小物体,小特征图检测大物体,使用金字塔结构的特征图,从而实现多尺度的检测。网络会对每个检测到物体的检测框进行打分,得到框中物体所属的类别,并且调整边框的比例和位置以适应对象的形状。

在这里插入图片描述

3.2 数据集

我们实验室自己采集的数据集:

数据集包含了48个手势视频,这些视频是由谷歌眼镜拍摄的,视频中以第一人称视角拍摄了室内室外的多人互动。数据集中包含4个类别的手势:自己的左右手,其他人的左右手。数据集中包含了高质量、像素级别标注的分割数据集和检测框标注数据集,视频中手不受到任何约束,包括了搭积木,下棋,猜谜等活动。

在这里插入图片描述

需要数据集的同学可以联系学长获取

3.3 最终改进的网络结构

在这里插入图片描述
在这里插入图片描述

最后整体实现效果还是不错的:
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1274139.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++调用python: VS2017 + Anaconda + pypi第三方库

步骤一&#xff1a;在Anaconda中创建虚拟环境 这一点对大家来说应该很简单&#xff0c;简单介绍一下&#xff0c;不做过多解释。值得注意的是&#xff0c;要用conda命令创建环境&#xff0c;用pip install配置环境。 conda create -n c_python_env python3.9 # 用conda创建pyt…

Java 的第二十章:多线程

创建线程 继承Thread 类 Thread 类时 java.lang 包中的一个类&#xff0c;从类中实例化的对象代表线程&#xff0c;程序员启动一个新线程需要建立 Thread 实例。 Thread 对象需要一个任务来执行&#xff0c;任务是指线程在启动时执行的工作&#xff0c;start() 方法启动线程&am…

Docker 使用心得

创建一个docker 镜像&#xff0c;相关运行代码&#xff0c;放在docker镜像文件同级&#xff0c; pm2 不能与 docker一起使用&#xff08;&#xff09; # node 服务docker FROM node:10.16.3LABEL author"sj"RUN mkdir -p /var/nodeCOPY ./node /var/nodeWORKDIR /va…

Vue实现图片预览(Viewer.js)

摘要&#xff1a; vue项目开发中遇到一个图片预览的需求&#xff0c;可以切换下一张&#xff0c;就是花里胡哨的&#xff0c;所以找viewer.js的插件 npm install v-viewer -S在项目main.js中加入&#xff1a; Viewer.setDefaults用于更改默认配置&#xff0c;比如我不想要显示…

基于AT89C51单片机的倒数计时器设计

1&#xff0e;设计任务 利用AT89C51单片机为核心控制元件,设计一个简易的数字电压表&#xff0c;设计的系统实用性强、操作简单&#xff0c;实现了智能化、数字化。 本设计采用单片机为主控芯片&#xff0c;结合周边电路组成LED彩灯的闪烁控制系统器&#xff0c;用来控制红色…

Paraformer 语音识别原理

Paraformer(Parallel Transformer)非自回归端到端语音系统需要解决两个问题&#xff1a; 准确预测输出序列长度&#xff0c;送入预测语音信号判断包含多少文字。 如何从encoder 的输出中提取隐层表征&#xff0c;作为decoder的输入。 采用一个预测器&#xff08;Predictor&…

【Node.js】笔记整理 5 - Express框架

写在最前&#xff1a;跟着视频学习只是为了在新手期快速入门。想要学习全面、进阶的知识&#xff0c;需要格外注重实战和官方技术文档&#xff0c;文档建议作为手册使用 系列文章 【Node.js】笔记整理 1 - 基础知识【Node.js】笔记整理 2 - 常用模块【Node.js】笔记整理 3 - n…

IDEA maven无法下载源代码处理

1、使用idea内置maven 在idea中新增一个mvn运行项,截图如下: 输入命令: dependency:resolve -Dclassifiersources 2、如果外部maven&#xff0c;不使用idea内部maven 在工程目录下命令行执行命令: mvn dependency:resolve -Dclassifiersources

HX3002入耳检测光感驱动调试-感0x08 寄存器溢出,不变化错误问题解决方法

是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17, 本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料, 读取光感0x08 寄存器溢出,不变化错误问题?原因 原因:没有读取到0x08数据,没有读0x…

2的幂运算

2的幂 描述 : 给你一个整数 n&#xff0c;请你判断该整数是否是 2 的幂次方。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 如果存在一个整数 x 使得 n 2x &#xff0c;则认为 n 是 2 的幂次方。 题目 : LeetCode 231.2的幂 : 231. 2 的幂 分…

vue3实现element table缓存滚动条

背景 对于后台管理系统&#xff0c;数据的展示形式大多都是通过表格&#xff0c;常常会出现的一种场景&#xff0c;从表格跳到二级页面&#xff0c;再返回上一页时&#xff0c;需要缓存当前的页码和滚动条的位置&#xff0c;以为使用keep-alive就能实现这两种诉求&#xff0c;…

centos服务器安装docker和Rabbitmq

centos服务器 一 centos安装docker1 安装docker所需要的依赖包2配置yum源3查看仓库中所有的docker版本4安装docker5 设置docker为开机自启6验证docker是否安装成功 二 使用docker安装RabbitMQ拉取RabbitMQ镜像创建并运行容器 一 centos安装docker 1 安装docker所需要的依赖包 …

RocketMQ-快速实战

MQ简介 MQ&#xff1a;MessageQueue&#xff0c;消息队列。是在互联网中使用非常广泛的一系列服务中间件。 Message&#xff1a;消息。消息是在不同进程之间传递的数据。这些进程可以部署在同一台机器上&#xff0c;也可以分布在不同机器上。&#xff08;数据形式&#xff1a…

NASM安装和结合nodepad++进行编译的过程

mov ax,0x30 mov bx,0xc0 add ax,bx times 502 db 0 db 0x55 db 0xAA nasm安装地址: https://www.nasm.us/ 下载exe安装 在命令行提示符输入nasm编译命令 nasm exam.asm -f bin -o exam.bin 此时输入回车将会执行编译过程。 1&#xff0c;启动NotePad&#xff0c;在菜单上选…

【驱动】串口驱动分析(三)-serial driver

简介 前两节我们介绍串口驱动的框架和tty core部分。这节我们介绍和硬件紧密相关的串口驱动部分。 UART驱动部分依赖于硬件平台&#xff0c;而TTY驱动和具体的平台无关。虽然UART部分依赖于平台&#xff0c;但是不管是哪个硬件平台&#xff0c;驱动的思路都是一致的&#xff…

vue3中的provide与inject跨层级组件(祖孙)间通信

provide和inject提供依赖注入&#xff0c;功能类似 vue2.x 的provide/inject 实现跨层级组件(祖孙)间通信 子或孙子组件接收到的数据可以用于读取显示&#xff0c;也可以进行修改&#xff0c;同步修改父&#xff08;祖&#xff09;组件的数据。 注意&#xff1a;无论子组件…

微服务--08--Seata XA模式 AT模式

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 分布式事务Seata 1.XA模式1.1.两阶段提交1.2.Seata的XA模型1.3.优缺点 AT模式2.1.Seata的AT模型2.2.流程梳理2.3.AT与XA的区别 分布式事务 > 事务–01—CAP理论…

Constraintlayout

goneMargin 约束的View隐藏时的margin 约束链风格 chainStyle 权重 bias 设置宽高比 w,h 百分比 GuideLine 基线 上下的间距 Group 指定一系列View进行绑定进行操作 通过init加载 然后setIds进行绑定 然后通过group进行操作 Layer 设置动画 Barrier Flow

QT线程的使用 循环中程序的等待

QT线程的使用 循环中程序的等待 先看效果1 pro文件2 头文件3 源文件4 ui文件先看效果 1 pro文件 QT += concurrent2 头文件 #ifndef MAINWINDOW_H #define MAINWINDOW_H