智能优化算法应用:基于平衡优化器算法无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/22 8:52:37

智能优化算法应用:基于平衡优化器算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于平衡优化器算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.平衡优化器算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用平衡优化器算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.平衡优化器算法

平衡优化器算法原理请参考:https://blog.csdn.net/u011835903/article/details/111388552
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

平衡优化器算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明平衡优化器算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1274067.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android Bitmap裁剪/压缩/缩放到限定的最大宽高值,Kotlin

Android Bitmap裁剪/压缩/缩放到限定的最大宽高值&#xff0c;Kotlin private fun cropImage(image: Bitmap): Bitmap {val maxWidth 1024 //假设宽度最大值1024val maxHeight 1024 //假设高度最大值1024val width image.widthval height image.heightif (width < maxWi…

opencv知识库:cv2.add()函数和“+”号运算符

需求场景 现有一灰度图像&#xff0c;需求是为该图像增加亮度。 原始灰度图像 预期目标图像 解决方案 不建议的方案——“”运算符 假设我们需要为原始灰度图像的亮度整体提升88&#xff0c;那么利用“”运算符的源码如下&#xff1a; import cv2img_path r"D:\pych…

git的版本控制流程

1、git是一款版本控制工具 例如我们常用的淘宝&#xff0c;每次升级&#xff0c;版本号就会加一。那么我们怎么控制版本号呢&#xff1f; --使用git。 2、最常使用的git指令 git add . 暂存 git commit -m"***" 提交到本地 git pull 将远程仓库代码下拉到本地 git …

基于GAN的多尺度门合并多模态MRI图像合成

Multi-Modal MRI Image Synthesis via GAN With Multi-Scale Gate Mergence 基于GAN的多尺度门合并多模态MRI图像合成背景贡献实验方法生成器gate mergence (GM) strategy&#xff08;门控融合策略&#xff09;判别器 损失函数Thinking 基于GAN的多尺度门合并多模态MRI图像合成…

从零开始部署一个网站详细图文教程——腾讯云的服务器、SSL证书,阿里云的域名,七牛云的对象存储、CDN等

文章目录 前期准备连接服务器配置Golang环境安装配置MySQL安装配置Redis安装配置Nginx安装Node域名解析SSL证书下载启动项目配置CDN加速总结 前期准备 云服务器&#xff08;必备&#xff09;、已经备案的域名&#xff08;必备&#xff09;&#xff0c;已签发的SSL证书&#xf…

plt创建指定色系

1、创建不连续色系 import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap# 定义颜色的RGB值 colors [(0.2, 0.4, 0.6), # 蓝色(0.8, 0.1, 0.3), # 红色(0.5, 0.7, 0.2),(0.3,0.5,0.8)] # 绿色# 创建色系 cmap ListedColormap(colors)# 绘制…

STM32USART+DMA实现不定长数据接收/发送

STM32USARTDMA实现不定长数据接收 CubeMX配置代码分享实践结果 这一期的内容是一篇代码分享&#xff0c;CubeMX配置介绍&#xff0c;关于基础的内容可以往期内容 夜深人静学32系列11——串口通信夜深人静学32系列18——DMAADC单/多通道采集STM32串口重定向/实现不定长数据接收 …

3D点云目标检测:VoxelNex解读

VoxelNext 通用检测器 vs VoxelNext一、3D稀疏卷积模块1.1、额外的两次下采样消融实验结果代码 1.2、稀疏体素删减消融实验&#xff1a;代码 二、稀疏体素高度压缩代码 三、稀疏预测head 通用检测器 vs VoxelNext 一、3D稀疏卷积模块 1.1、额外的两次下采样 使用通用的3D spa…

2023年亚太杯数学建模C题新能源汽车(思路模型代码)

一、翻译 新能源汽车是指采用先进的技术原理、新技术和新结构&#xff0c;以非常规车用燃料&#xff08;非常规车用燃料是指汽油和柴油以外的燃料(非常规车用燃料是指汽油和柴油以外的燃料&#xff09;&#xff0c;并集成了汽车动力控制和驱动等先进技术的汽车。新能源汽车包括…

Gitee 之初体验(上)

我们在项目开发或者自己学习的时候&#xff0c;总会存在这样的问题&#xff1a; 在一台电脑上编写完代码&#xff0c;想要再另外一台电脑上再去写&#xff0c;再或者和其他人一起协作等等场合&#xff0c;代码传来传去很麻烦。 这个时候&#xff0c;我们就可以去使用代码管理工…

在java java.util.Date 已知逝去时间怎么求年月日 数学计算不用其他方法

在Java中&#xff0c;使用java.util.Date类已知逝去时间求年月日的方法如下&#xff1a; 首先&#xff0c;获取当前时间和逝去时间之间的毫秒数差值&#xff0c;可以使用Date类的getTime()方法获得时间戳。 将毫秒数转换为秒数&#xff0c;并计算出总共的天数。 根据总共的天…

计算机网络:应用层(上篇)

文章目录 前言一、应用层协议原理1.网络应用的体系结构2.进程通信 二、Web与HTTP1.HTTP概况2.HTTP连接3.HTTP请求报文4.用户-服务器状态&#xff1a;cookies5.Web缓存&#xff08;代理服务器&#xff09; 三、FTP&#xff1a;文件传输协议1.FTP&#xff1a;控制连接与数据连接分…

ClassNotFoundException: org.apache.hive.spark.client.Job

hive使用的是3.13版本&#xff0c;spark是3.3.3支持hadoop3.x hive将engine从mr改成spark&#xff0c;通过beeline执行insert、delete时一直报错&#xff0c;sparkTask rpc关闭&#xff0c; 查看yarn是出现ClassNotFoundException: org.apache.hive.spark.client.Job。 开始…

怎么一键批量转换PDF/图片为Excel、Word,从而提高工作效率?

在处理大量PDF、图片文件时&#xff0c;我们往往需要将这些文件转换成Word或Excel格式以方便编辑和统计分析。此时&#xff0c;金鸣表格文字识别大师这款工具可以发挥巨大作用。下面&#xff0c;我们就来探讨如何使用它进行批量转换&#xff0c;以实现高效处理。 一、准备工作…

linux服务器环境搭建(使用yum 安装mysql、jdk、redis)

一:yum的安装 1:下载yum安装包并解压 wget http://yum.baseurl.org/download/3.2/yum-3.2.28.tar.gz tar xvf yum-3.2.28.tar.gz 2.进入yum-3.2.28文件夹中进行安装,执行安装指令 cd yum-3.2.28 sudo apt install yum 3.更新版本 yum check-update yum update yum cle…

(一)C语言概述

文章目录 一、C语言1、计算机结构组成 二、第一个C语言程序&#xff1a;hello world1、编写C语言代码&#xff1a;hello.c2、通过gcc编译C代码&#xff08;1&#xff09;gcc编译器介绍&#xff08;2&#xff09;Window平台中gcc环境配置 3、代码分析&#xff08;1&#xff09;#…

基础课14——语音识别

ASR 是自动语音识别&#xff08;Automatic Speech Recognition&#xff09;的缩写&#xff0c;是一种将人类语音转换为文本的技术。ASR 系统可以处理实时音频流或已录制的音频文件&#xff0c;并将其转换为文本。它是一种自然语言处理技术&#xff0c;广泛应用于许多领域&#…

C++ :运算符重载

运算符重载&#xff1a; 运算符重载概念&#xff1a;对已有的运算符重新进行定义&#xff0c;赋予其另一种功能&#xff0c;以适应不同的数据类型 运算符的重载实际是一种特殊的函数重载&#xff0c;必须定义一个函数&#xff0c;并告诉C编译器&#xff0c;当遇到该重载的运算符…

每日一练2023.11.30——验证身份【PTA】

题目链接 &#xff1a;验证身份 题目要求&#xff1a; 一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下&#xff1a; 首先对前17位数字加权求和&#xff0c;权重分配为&#xff1a;{7&#xff0c;9&#xff0c;10&#xff0c;5&a…

万界星空科技/仓库管理WMS系统/免费仓库管理系统

仓库管理&#xff08;仓储管理&#xff09;&#xff0c;指对仓库及仓库内部的物资进行收发、结存等有效控制和管理&#xff0c;确保仓储货物的完好无损&#xff0c;保证生产经营活动的正常进行&#xff0c;在此基础上对货物进行分类记录&#xff0c;通过报表分析展示仓库状态、…