1、为什么需要树这种数据结构?
- 数组存储方式的分析
优点:通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。
缺点:如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低。 - 链式存储方式的分析
优点:在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可, 删除效率也很好)。
缺点:在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历)。 - 树存储方式的分析
能提高数据存储,读取的效率, 比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也可以保证数据的插入,删除,修改的速度
2、概念
树(Tree)是一个分层的数据结构,由节点和连接节点的边组成,是一种特殊的图,它与图最大的区别是没有循环。树的结构十分直观,而树的很多概念定义都有一个相同的特点:递归
3、树的分类
- 二叉查找树(BST):解决了排序的基本问题,但是由于无法保证平衡,可能退化为链表
- 平衡二叉树(AVL):通过旋转解决了平衡的问题,但是旋转操作效率太低
- 红黑树:通过舍弃严格的平衡和引入红黑节点,解决了AVL旋转效率过低的问题,但是在磁盘等场景下,树仍然太高,IO次数太多
- B树:通过将二叉树改为多路平衡查找树,解决了树过高的问题
- B+树:在B树的基础上,将非叶节点改造为不存储数据的纯索引节点,进一步降低了树的高度;此外将叶节点使用指针连接成链表,范围查询更加高效
4、树的常用术语
- 节点
- 根节点
- 父节点
- 子节点
- 叶子节点 (没有子节点的节点)
- 节点的权(节点值)
- 路径(从root节点找到该节点的路线)
- 层
- 子树
- 树的高度(最大层数)
- 森林 :多颗子树构成森林
5、二叉树
- 每个节点最多只能有两个子节点的一种形式称为二叉树
- 二叉树的子节点分为左节点和右节点
- 如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树
- 如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树
注意:如果把61节点删除,就不是完全二叉树了,因为叶子节点不连续了。