计算机网络(超详解!) 第二节 物理层(上)

news2024/11/20 8:26:52

1.物理层的基本概念

物理层考虑的是怎样才能在连接各种计算机的传输媒体上传输数据比特流,而不是指具体的传输媒体。

物理层的作用是要尽可能地屏蔽掉不同传输媒体和通信手段的差异。

用于物理层的协议也常称为物理层规程(procedure)。

2.物理层的主要任务

主要任务:确定与传输媒体的接口的一些特性。

机械特性 :指明接口所用接线器的形状和尺寸、引线数目和排列、固定和锁定装置等。

电气特性:指明在接口电缆的各条线上出现的电压的范围。

功能特性:指明某条线上出现的某一电平的电压表示何种意义。

过程特性 :指明对于不同功能的各种可能事件的出现顺序。

3.数据通信系统的模型

一个数据通信系统包括三大部分:源系统(或发送端、发送方)、传输系统(或传输网络)和目的系统(或接收端、接收方)。

常用术语

数据 (data) —— 运送消息的实体。

信号 (signal) —— 数据的电气的或电磁的表现。

模拟信号 (analogous signal) —— 代表消息的参数的取值是连续的。

数字信号 (digital signal) —— 代表消息的参数的取值是离散的。

码元 (code) —— 在使用时间域(或简称为时域)的波形表示数字信号时,代表不同离散数值的基本波形。

4.有关信道的几个基本概念

信道 —— 一般用来表示向某一个方向传送信息的媒体。

单向通信(单工通信)——只能有一个方向的通信而没有反方向的交互。

双向交替通信(半双工通信)——通信的双方都可以发送信息,但不能双方同时发送(当然也就不能同时接收)。

双向同时通信(全双工通信)——通信的双方可以同时发送和接收信息。

基带信号(即基本频带信号)—— 来自信源的信号。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。

基带信号往往包含有较多的低频成分,甚至有直流成分,而许多信道并不能传输这种低频分量或直流分量。因此必须对基带信号进行调制(modulation)。

调制分为两大类:

基带调制:仅对基带信号的波形进行变换,使它能够与信道特性相适应。变换后的信号仍然是基带信号。把这种过程称为编码 (coding)。

带通调制:使用载波 (carrier)进行调制,把基带信号的频率范围搬移到较高的频段,并转换为模拟信号,这样就能够更好地在模拟信道中传输(即仅在一段频率范围内能够通过信道) 。

带通信号 :经过载波调制后的信号。

(1) 常用编码方式

不归零制:正电平代表 1,负电平代表 0。

归零制:正脉冲代表 1,负脉冲代表 0。

曼彻斯特编码:位周期中心的向上跳变代表 0,位周期中心的向下跳变代表 1。但也可反过来定义。

差分曼彻斯特编码:在每一位的中心处始终都有跳变。位开始边界有跳变代表 0,而位开始边界没有跳变代表 1。

从信号波形中可以看出,曼彻斯特(Manchester) 编码和差分曼彻斯特编码产生的信号频率比不归零制高。

从自同步能力来看,不归零制不能从信号波形本身中提取信号时钟频率(这叫作没有自同步能力),而曼彻斯特编码和差分曼彻斯特编码具有自同步能力。

(2) 基本的带通调制方法

基带信号往往包含有较多的低频成分,甚至有直流成分,而许多信道并不能传输这种低频分量或直流分量。为了解决这一问题,就必须对基带信号进行调制 (modulation)。

最基本的二元制调制方法有以下几种:

调幅(AM):载波的振幅随基带数字信号而变化。

调频(FM):载波的频率随基带数字信号而变化。

调相(PM) :载波的初始相位随基带数字信号而变化。

5.信道的极限容量

任何实际的信道都不是理想的,在传输信号时会产生各种失真以及带来多种干扰。

码元传输的速率越高,或信号传输的距离越远,或传输媒体质量越差,在信道的输出端的波形的失真就越严重。

实际信道:

从概念上讲,限制码元在信道上的传输速率的因素有以下两个:

(1)信道能够通过的频率范围

具体的信道所能通过的频率范围总是有限的。信号中的许多高频分量往往不能通过信道。

1924年,奈奎斯特 (Nyquist) 就推导出了著名的奈氏准则。他给出了在假定的理想条件下,为了避免码间串扰,码元的传输速率的上限值。

在任何信道中,码元传输的速率是有上限的,否则就会出现码间串扰的问题,使接收端对码元的判决(即识别)成为不可能。如果信道的频带越宽,也就是能够通过的信号高频分量越多,那么就可以用更高的速率传送码元而不出现码间串扰。

(2) 信噪比

噪声存在于所有的电子设备和通信信道中。

噪声是随机产生的,它的瞬时值有时会很大。因此噪声会使接收端对码元的判决产生错误。

但噪声的影响是相对的。如果信号相对较强,那么噪声的影响就相对较小。

信噪比就是信号的平均功率和噪声的平均功率之比。

常记为 S/N,并用分贝 (dB) 作为度量单位。即:信噪比(dB) = 10 log10(S/N) (dB)

例如,当 S/N = 10 时,信噪比为 10 dB,而当 S/N = 1000时,信噪比为 30 dB。

1984年,香农 (Shannon) 用信息论的理论推导出了带宽受限且有高斯白噪声干扰的信道的极限、无差错的信息传输速率(香农公式)。

信道的极限信息传输速率 C 可表达为:C = W log2(1+S/N) (bit/s)

其中: W 为信道的带宽(以 Hz 为单位);

S 为信道内所传信号的平均功率;

N 为信道内部的高斯噪声功率。

香农公式表明

信道的带宽或信道中的信噪比越大,则信息的极限传输速率就越高。

只要信息传输速率低于信道的极限信息传输速率,就一定可以找到某种办法来实现无差错的传输。

若信道带宽 W 或信噪比 S/N 没有上限(当然实际信道不可能是这样的),则信道的极限信息传输速率 C 也就没有上限。

实际信道上能够达到的信息传输速率要比香农的极限传输速率低不少。

请注意

对于频带宽度已确定的信道,如果信噪比不能再提高了,并且码元传输速率也达到了上限值,那么还有办法提高信息的传输速率。

这就是:用编码的方法让每一个码元携带更多比特的信息量。

6.物理层下面的传输媒体

传输媒体也称为传输介质或传输媒介,它就是数据传输系统中在发送器和接收器之间的物理通路。

传输媒体可分为两大类,即导引型传输媒体和非导引型传输媒体。

在导引型传输媒体中,电磁波被导引沿着固体媒体(铜线或光纤)传播。

非导引型传输媒体就是指自由空间。在非导引型传输媒体中,电磁波的传输常称为无线传输。

导引型传输媒体

双绞线

最常用的传输媒体。

模拟传输和数字传输都可以使用双绞线,其通信距离一般为几到十几公里。

屏蔽双绞线 STP (Shielded Twisted Pair)p 带金属屏蔽层

无屏蔽双绞线 UTP (Unshielded Twisted Pair)

同轴电缆

同轴电缆具有很好的抗干扰特性,被广泛用于传输较高速率的数据。

同轴电缆的带宽取决于电缆的质量。

50 W同轴电缆 —— LAN / 数字传输常用

75 W同轴电缆 —— 有线电视 / 模拟传输常用内导体

光缆

光纤是光纤通信的传输媒体。

由于可见光的频率非常高,约为 108 MHz 的量级,因此一个光纤通信系统的传输带宽远远大于目前其他各种传输媒体的带宽。

当光线从高折射率的媒体射向低折射率的媒体时,其折射角将大于入射角。因此,如果入射角足够大,就会出现全反射,光也就沿着光纤传输下去。

只要从纤芯中射到纤芯表面的光线的入射角大于某个临界角度,就可产生全反射。多模光纤与单模光纤

多模光纤:

可以存在多条不同角度入射的光线在一条光纤中传输。这种光纤就称为多模光纤。

单模光纤:

若光纤的直径减小到只有一个光的波长,则光纤就像一根波导那样,它可使光线一直向前传播,而不会产生多次反射。这样的光纤称为单模光纤。

光纤通信中使用的光波的波段

常用的三个波段的中心分别位于 850 nm, 1300 nm 和 1550 nm。

所有这三个波段都具有 25000~30000 GHz 的带宽,可见光纤的通信容量非常大。

光纤优点

(1) 通信容量非常大。

(2) 传输损耗小,中继距离长。

(3) 抗雷电和电磁干扰性能好。

(4) 无串音干扰,保密性好。

(5) 体积小,重量轻。

非导引型传输媒体

将自由空间称为“非导引型传输媒体”。

无线传输所使用的频段很广。

短波通信(即高频通信)主要是靠电离层的反射,但短波信道的通信质量较差,传输速率低。

微波在空间主要是直线传播。

传统微波通信有两种方式:

地面微波接力通信

卫星通信

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1269553.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Unity版本使用情况统计(更新至2023年10月)

本期UWA发布的内容是第十三期Unity版本使用统计,统计周期为2023年5月至2023年10月,数据来源于UWA网站(www.uwa4d.com)性能诊断提测的项目。希望给Unity开发者提供相关的行业趋势,了解近半年来哪些Unity版本的使用概率更…

Steps步骤条(antd-design组件库)简单用法

1.Steps步骤条 引导用户按照流程完成任务的导航条。 2.何时使用 当任务复杂或者存在先后关系时,将其分解成一系列步骤,从而简化任务。 组件代码来自: 步骤条 Steps - Ant Design 3.本地验证前的准备 参考文章【react项目antd组件-demo:hello-…

11.兔子生崽问题【2023.11.26】

1.问题描述 有一对兔子&#xff0c;从出生后第3个月起每个月都生一对兔子&#xff0c;小兔子长到第三个月后每个月又生一对兔子&#xff0c;假如兔子都不死&#xff0c;问 第二十个月的兔子对数为多少对&#xff1f; 2.解决思路 3.代码实现 #include<stdio.h> int mai…

单相直流电表和单相智能电表有哪些区别?

在众多的智能电表中&#xff0c;单相智能电表已成为家庭用电、工业用电等领域的重要组成部分。与此同时&#xff0c;单相直流电表也因其特性在某些特定场合受到关注。下面就来讲讲两者都有哪些区别&#xff0c;一起来看下吧&#xff01; 一、工作原理及性能差异 1.单相直流电表…

微信小程序本地和真机调试文件上传成功但体验版不成功

可能是微信小程序ip白名单的问题&#xff0c;去微信公众平台&#xff08;小程序&#xff09;上设置小程序的ip白名单 1、在本地中取消不校验 然后在本地去上传文件&#xff0c;就会发现控制台报错了&#xff0c;会提示一个https什么不在ip白名单&#xff0c;复制那个网址 2、…

5 面试题--redis

伪客户端&#xff1a; 伪客户端的 fd 属性值为 -1&#xff1b;伪客户端处理的命令请求来源于 AOF ⽂件或者 Lua 脚本&#xff0c;⽽不是⽹络&#xff0c;所以这种客户端不需要套接字连接&#xff0c;⾃然也不需要记录套接字描述符。⽬前 Redis 服务器会在两个地⽅ ⽤到伪客户端…

西工大网络空间安全学院计算机系统基础实验一(9, 10, 11, 12, 13)

还是那句话&#xff0c;专心做好你自己的&#xff0c;老老实实把基础打好&#xff0c;不要被其他人带跑节奏&#xff0c;不要跟他打&#xff0c;跟着这系列博客&#xff0c;稳扎稳打一步一步来。即使你VMware workstation没下载好&#xff0c;即使你Ubuntu虚拟机没配好&#xf…

nacos配置变更导致logback日志异常

问题背景: 线上的服务突然内存爆满&#xff0c;查服务器突然发现&#xff0c;日志全部打印到了/tmp/tomcat.xxx.port目录下&#xff0c;后来对应操作时间&#xff0c;和nacos修改配置是同一时间发生的&#xff0c;但是疑惑的点是&#xff0c;nacos配置变更为什么会引起logback的…

MySQL与其他数据库产品的比较,优势在哪里?

作为数据库管理领域的博主作家&#xff0c;我深知数据库在软件开发和数据管理中的重要性。在当今众多的数据库产品中&#xff0c;MySQL作为一种流行的开源关系型数据库管理系统&#xff0c;具有许多优势和特点。下面&#xff0c;我将通过对与其他数据库产品的比较以及MySQL的优…

【华为数通HCIP | 网络工程师】821刷题日记-IS-IS(2)

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大三在校生&#xff0c;喜欢AI编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;hmmwx53 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️…

mac截图Snagit 中文介绍

1.超越普通的屏幕截图 TechSmith Snagit 是唯一具有内置高级图像编辑和屏幕录制功能的屏幕捕获软件。因此&#xff0c;您可以在一个程序中轻松创建高质量的图像和视频。 2.最后&#xff0c;屏幕捕获软件可以完成您所做的一切 快速解释一个过程如果您正在努力清楚地沟通&…

电子学会C/C++编程等级考试2022年12月(三级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:鸡兔同笼 一个笼子里面关了鸡和兔子(鸡有2只脚,兔子有4只脚,没有例外)。已经知道了笼子里面脚的总数a,问笼子里面至少有多少只动物,至多有多少只动物。 时间限制:1000 内存限制:65536输入 一行,一个正整数a (a < 327…

HarmonyOS——UI开展前的阶段总结

当足够的了解了HarmonyOS的相关特性之后&#xff0c;再去介入UI&#xff0c;你会发现无比的轻松&#xff0c;特别当你有着其他的声明式UI开发的经验时&#xff0c;对于HarmonyOS的UI&#xff0c;大致一扫&#xff0c;也就会了。 如何把UI阐述的简单易懂&#xff0c;又能方便大…

全局异常处理类

全局异常处理类 创建步骤 定义一个自己的全局错误处理类GlobalExceptionHandler创建一个ExceptionHandler类&#xff0c;主要是用ControllerAdvice和 ExceptionHandler处理错误信息 以下说明各个注解的作用&#xff1a; ControllerAdvice(annotations {RestController.class…

【C++】单链表——单链表的基本操作

1、单链表的定义 由于顺序表的插入删除操作需要移动大量的元素&#xff0c;影响了运行效率&#xff0c;因此引入了线性表的链式存储——单链表。单链表通过一组任意的存储单元来存储线性表中的数据元素&#xff0c;不需要使用地址连续的存储单元&#xff0c;因此它不要求在逻辑…

Mysq8l在Centos上安装后忘记root密码如何重新设置

场景 Mysql8在Windows上离线安装时忘记root密码&#xff1a; Mysql8在Windows上离线安装时忘记root密码-CSDN博客 如果是在Windows上忘记密码可以参考上面。 如果在Centos中安装mysql可以参考下面。 CentOS7中安装Mysql8并配置远程连接和修改密码等&#xff1a; CentOS7中…

【知识】稀疏矩阵是否比密集矩阵更高效?

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 问题提出 有些地方说&#xff0c;稀疏图比密集图的计算效率更高&#xff0c;真的吗&#xff1f; 原因猜想 这里的效率高&#xff0c;应该是有前提的&#xff1a;当使用稀疏矩阵的存储格式(如CSR)时&#xff0c;计…

使用 Docker 安装和配置 MySQL 数据库简介

目录 一、使用镜像安装 1、查询镜像 2、拉取镜像 3、查看本地镜像 4、启动docker镜像 二、使用Docker Compose安装 1、安装Docker和Docker Compose 2、创建Docker Compose文件&#xff1a; 3、启动MySQL容器 4、验证MySQL容器是否正常运行 5、连接到MySQL容器 6、停止…

适用于 Windows 的最佳电脑数据恢复软件是什么?

数据丢失是数字世界中令人不快的一部分&#xff0c;它会在某一时刻影响许多计算机用户。很容易意外删除一些重要文件&#xff0c;这可能会在您努力恢复它们时带来不必要的压力。幸运的是&#xff0c;数据恢复软件可以帮助恢复已删除的文件&#xff0c;即使您没有备份它们。这是…

【IEEE独立出版】2024第四届神经网络、信息与通信工程国际学术会议(NNICE 2024)

2024第四届神经网络、信息与通信工程国际学术会议&#xff08;NNICE 2024&#xff09; 2024 4th International Conference on Neural Networks, Information and Communication Engineering 2024第四神经网络、信息与通信工程国际学术会议&#xff08;NNICE 2024&#xff0…