时间序列分析【python代码实现】

news2024/11/28 15:40:38

时间序列分析是一种用于建模和分析时间上连续观测的统计方法。 它涉及研究数据在时间维度上的模式、趋势和周期性。常见的时间序列分析包括时间序列的平稳性检验、自相关性和部分自相关性分析、时间序列模型的建立和预测等。

下面是一个使用Python实现时间序列分析的示例:

# 导入所需的库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm

# 读取时间序列数据
data = pd.read_csv('time_series_data.csv', parse_dates=['date'], index_col='date')

# 绘制时间序列折线图
plt.figure(figsize=(10, 6))
plt.plot(data)
plt.xlabel('Date')
plt.ylabel('Value')
plt.title('Time Series Data')
plt.show()

# 检验时间序列的平稳性
result = sm.tsa.adfuller(data['value'])
print('ADF Statistic:', result[0])
print('p-value:', result[1])

# 分解时间序列
decomposition = sm.tsa.seasonal_decompose(data['value'], model='additive')
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid

# 绘制分解后的时间序列
plt.figure(figsize=(12, 8))
plt.subplot(411)
plt.plot(data, label='Original')
plt.legend(loc='best')
plt.subplot(412)
plt.plot(trend, label='Trend')
plt.legend(loc='best')
plt.subplot(413)
plt.plot(seasonal, label='Seasonality')
plt.legend(loc='best')
plt.subplot(414)
plt.plot(residual, label='Residuals')
plt.legend(loc='best')
plt.tight_layout()
plt.show()

# 计算自相关性和部分自相关性
sm.graphics.tsa.plot_acf(data['value'])
plt.show()

sm.graphics.tsa.plot_pacf(data['value'])
plt.show()

# 建立时间序列模型(ARIMA)
model = sm.tsa.ARIMA(data['value'], order=(1, 0, 1))
model_fit = model.fit(disp=0)

# 模型预测
forecast = model_fit.forecast(steps=10)[0]
print('Forecasted Values:', forecast)

在这个示例中,我们首先导入所需的库,然后使用pd.read_csv函数读取时间序列数据,其中日期列被解析为日期对象,并设置为索引列。接下来,我们使用plt.plot函数绘制了时间序列数据的折线图。

然后,我们使用sm.tsa.adfuller函数对时间序列数据进行平稳性检验。该函数返回ADF统计量和p值,用于判断时间序列数据的平稳性。

接下来,我们使用sm.tsa.seasonal_decompose函数对时间序列进行分解,得到趋势、季节性和残差。然后,使用plt.subplotplt.plot函数绘制了分解后的时间序列图。

之后,我们使用sm.graphics.tsa.plot_acfsm.graphics.tsa.plot_pacf函数计算并绘制了时间序列数据的自相关性和部分自相关性图。

最后,我们使用sm.tsa.ARIMA函数建立ARIMA模型,并使用fit方法拟合模型。然后,我们使用forecast方法对未来的10个时间步进行预测,并打印出预测值。

请注意,在运行代码之前需要安装statsmodels、pandas和matplotlib等库,并将时间序列数据保存为CSV文件(文件名为’time_series_data.csv’)。

一个使用更复杂的时间序列分析算法的例子是通过使用长短期记忆网络(Long Short-Term Memory, LSTM)进行时间序列预测。LSTM是一种适用于处理具有长期依赖关系的序列数据的深度学习模型。
下面是一个使用Python和Keras库实现LSTM进行时间序列预测的示例:

# 导入所需的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

# 读取时间序列数据
data = pd.read_csv('time_series_data.csv', parse_dates=['date'], index_col='date')

# 将数据归一化到0-1的范围
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(data)

# 划分训练集和测试集
train_size = int(len(scaled_data) * 0.8)
train_data = scaled_data[:train_size]
test_data = scaled_data[train_size:]

# 准备训练数据
def prepare_data(data, lookback):
    X, Y = [], []
    for i in range(len(data) - lookback - 1):
        X.append(data[i:(i + lookback), 0])
        Y.append(data[i + lookback, 0])
    return np.array(X), np.array(Y)

lookback = 10
train_X, train_Y = prepare_data(train_data, lookback)
test_X, test_Y = prepare_data(test_data, lookback)

# 转换数据为LSTM所需的输入格式 [样本数, 时间步长, 特征数]
train_X = np.reshape(train_X, (train_X.shape[0], train_X.shape[1], 1))
test_X = np.reshape(test_X, (test_X.shape[0], test_X.shape[1], 1))

# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(lookback, 1)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')

# 训练模型
model.fit(train_X, train_Y, epochs=100, batch_size=16, verbose=2)

# 在测试集上进行预测
test_predict = model.predict(test_X)

# 将预测数据进行逆归一化
test_predict = scaler.inverse_transform(test_predict)
test_Y = scaler.inverse_transform([test_Y])

# 绘制预测结果和实际值的对比图
plt.figure(figsize=(12, 6))
plt.plot(test_Y.flatten(), label='True')
plt.plot(test_predict.flatten(), label='Prediction')
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Time Series Prediction using LSTM')
plt.legend()
plt.show()

在示例中,我们首先导入所需的库。然后使用pd.read_csv函数读取时间序列数据,并使用MinMaxScaler将数据归一化到0-1的范围。接下来,我们将数据集划分为训练集和测试集。

然后,我们定义了一个prepare_data函数,用于将时间序列数据转换为LSTM所需的输入格式。然后,我们使用该函数准备训练数据。

接下来,我们将训练数据转换为LSTM所需的输入格式,并使用Sequential函数构建了一个含有一个LSTM层和一个全连接层的模型。然后,我们使用compile方法编译模型,并使用fit方法在训练集上训练模型。

在模型训练完毕后,我们使用训练好的模型对测试集进行预测。然后,我们使用inverse_transform函数将预测结果和实际值逆归一化。最后,我们使用plt.plot函数绘制了预测结果和实际值的对比图。

请注意,在运行代码之前需要安装Keras、scikit-learn、pandas和matplotlib等库,并将时间序列数据保存为CSV文件(文件名为’time_series_data.csv’)。

如果你想更深入地了解人工智能的其他方面,比如机器学习、深度学习、自然语言处理等等,也可以点击这个链接,我按照如下图所示的学习路线为大家整理了100多G的学习资源,基本涵盖了人工智能学习的所有内容,包括了目前人工智能领域最新顶会论文合集和丰富详细的项目实战资料,可以帮助你入门和进阶。

人工智能交流群(大量资料)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1266639.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

河北中洺科技-数据标注是怎样工作的?

由于人工智能系统的普及,各种智能场景在生活中变得普遍。然而,在这些极大方便我们生活的智能背后,数据标注似乎从未被人们所重视。数据标注是怎样的工作?为什么被称为人工智能训练师? 要想了解这些问题,我…

Spark---SparkCore(四)

三、Spark Master HA 1、Master的高可用原理 Standalone集群只有一个Master,如果Master挂了就无法提交应用程序,需要给Master进行高可用配置,Master的高可用可以使用fileSystem(文件系统)和zookeeper(分布式协调服务&#xff09…

前端入门(四)Ajax、Promise异步、Axios通信、vue-router路由

文章目录 AjaxAjax特点 Promise 异步编程(缺)Promise基本使用状态 - PromiseState结果 - PromiseResult Axios基本使用 Vue路由 - vue-router单页面Web应用(single page web application,SPA)vue-router基本使用路由使…

一文例说嵌入式 C 程序的内聚和耦合

1 - 原理篇 低耦合,是指模块之间尽可能的使其独立存在,模块之间不产生联系不可能,但模块与模块之间的接口应该尽量少而简单。这样,高内聚从整个程序中每一个模块的内部特征角度,低耦合从程序中各个模块之间的关联关系…

从0开始学习JavaScript--JavaScript 闭包的应用

JavaScript的高级概念中,闭包(closure)常常是一个让人感到困惑但又强大的概念。在这篇文章中,将深入探讨闭包的概念以及它在JavaScript中的各种应用场景。 什么是闭包? 在JavaScript中,闭包是指一个函数能…

图表控件LightningChart .NET中文教程 - 如何创建WPF 2D热图?(二)

LightningChart.NET完全由GPU加速,并且性能经过优化,可用于实时显示海量数据-超过10亿个数据点。 LightningChart包括广泛的2D,高级3D,Polar,Smith,3D饼/甜甜圈,地理地图和GIS图表以及适用于科学…

pygame光标

文章目录 系统内置光标自定义光标 系统内置光标 pygame.mouse中,通过get_cursor和set_cursor来获取和设置光标状态。 pygame中封装了如下常量,表示不同的光标形态 值常量说明0pygame.SYSTEM_CURSOR_ARROW箭头1pygame.SYSTEM_CURSOR_IBEAM插入光标2pyg…

Pikachu靶场(PHP反序列化漏洞)

查看php反序列化漏洞的概述&#xff0c;了解序列化与反序列化。 构造payload <?php class S{var $test "<script>alert(wjy)</script>"; } $c new S(); echo(serialize($c)); ?>将对象序列化为O:1:"S":1:{s:4:"test";s:…

jenkins pipeline 运行超时后强制停止

在Jenkins中&#xff0c;Pipeline是一种用于定义持续集成/持续交付&#xff08;CI/CD&#xff09;流程的工具。有时候&#xff0c;Pipeline的执行可能会超时&#xff0c;需要强制停止。 要在Jenkins Pipeline中设置超时&#xff0c;并在超时后强制停止运行&#xff0c;可以使用…

djangorestframework modelserializer 处理关系字段

djangorestframework modelserializer 处理关系字段 0.技术体系 django4.2 djangorestframework vue3 element-plus uWSGI(部署) 宝塔 1.关系 一对一、多对一、多对多 2.drf modelserializer对关系字段的处理 modelserializer默认处理关系字段为PrimaryKeyRelatedField…

个体诊所门诊电子处方软件,个体药店收银系统,配方模板一键导入设置和操作教程

个体诊所门诊电子处方软件&#xff0c;个体药店收银系统&#xff0c;配方模板一键导入设置和操作教程 配方模板设置教程&#xff1a;软件导航栏点击 基本信息设置——配方模板设置 操作步骤&#xff1a; 1、添加分类/管理分类&#xff1a;添加常用的分类名称 2、在常用配方分…

在线教育机构如何借助小程序技术创新

随着人工智能AI技术的发展&#xff0c;我们的生活学习工作方式都在经历变化。在线教育也处于这场变化的核心之中&#xff0c;同样借助这股东风引来了行业的一波红利期。 在正式分享在线教育行业的开始&#xff0c;我们先简单搞清楚什么是在线教育。 在线教育行业是指通过互联…

交叉编译

1. 交叉开发 交叉编译&#xff1a; 在电脑把程序编写 编译 调试好 再下载到嵌入式产品中运行 编译&#xff1a; gcc 之前编译环境和运行环境是一样的 交叉编译&#xff1a; 编译 把编译代码和运行分开 编译代码在虚拟机中 运行…

【前端】浅谈async/await异步传染性

文章目录 概述观点无法解决可以解决 来源 概述 "异步传染性"问题通常是指&#xff0c;当一个函数使用了async和await&#xff0c;其调用者也需要使用async和await处理异步操作&#xff0c;导致整个调用链都变成异步的。这种情况可能导致代码变得更复杂&#xff0c;不…

居家适老化设计第三十四条---卫生间之照明

居家适老化卫生间照明设计需要考虑以下几个方面&#xff1a;1. 光源选择&#xff1a;选择适合老年人眼睛的柔和光源&#xff0c;避免刺眼和眩光的发生。可以选择LED灯具&#xff0c;因为它们具有节能、寿命长和可调光的特点。2. 光线布置&#xff1a;在不同区域设置不同的光线&…

为什么Redis这么快?5分钟成为Redis高手

Redis简介 Redis 是 C 语言开发的一个开源高性能键值对的内存数据库&#xff0c;可以用来做数据库、缓存、消息中间件等场景&#xff0c;是一种 NoSQL&#xff08;not-only sql&#xff0c;非关系型数据库&#xff09;的数据库。 Redis特点 优秀的性能&#xff0c;数据是存储…

伪原创工具,免费的5款伪原创工具

寻找一款合适的伪原创工具是提高写作效率的重要一环。在这里&#xff0c;我们为您推荐了五款不同特点的伪原创工具&#xff0c;并对它们进行了详细的测评。 第一款伪原创工具&#xff1a;147SEO改写 147SEO改写是一款强大的AI智能伪原创写作工具&#xff0c;具备多个模板供用…

Postman进阶功能实战演练

Postman除了前面介绍的一些功能&#xff0c;还有其他一些小功能在日常接口测试或许用得上。今天&#xff0c;我们就来盘点一下&#xff0c;如下所示&#xff1a; 1.数据驱动 想要批量执行接口用例&#xff0c;我们一般会将对应的接口用例放在同一个Collection中&#xff0c;然…

Ubuntu Linux玩童年小霸王插卡游戏

1.下载安装模拟器 在Windows平台模拟器非常多&#xff0c;而且效果也很优秀&#xff0c;Linux平台的用户常常很羡慕&#xff0c;却因为系统的缘故&#xff0c;无法使用这样的模拟器&#xff0c;但是随着时代的发展&#xff0c;Linux平台也出现了许多优秀的模拟器&#xff0c;现…

Java基础之原码,反码,补码,位运算符

文章目录 前言一、二进制在运算中介绍二、原码&#xff0c;反码&#xff0c;补码&#xff08;针对有符号的&#xff09;三、位运算符按位与&按位或 |按位异或 ^按位取反 ~算术右移>>算术左移<<逻辑右移>>> 总结 前言 原码&#xff0c;反码&#xff0…