深度学习框架配置

news2025/1/17 0:55:16

目录

1. 配置cuda环境

1.1. 安装cuda和cudnn

1.1.1. 显卡驱动配置

1.1.2. 下载安装cuda

1.1.3. 下载cudnn,将解压后文件复制到cuda目录下

1.2. 验证是否安装成功

2. 配置conda环境

2.1. 安装anaconda

2.2. conda换源

2.3. 创建conda环境

2.4. pip换源

3. 配置深度学习框架

3.1. PyTorch

3.2. Tensorflow


1. 配置cuda环境

1.1. 安装cuda和cudnn

1.1.1. 显卡驱动配置

  • 保证电脑有独显且为N卡,只有nvidia显卡才能使用cuda
  • cuda版本与显卡驱动版本有关(官网)
cuda版本与显卡驱动版本对照表
cuda版本与显卡驱动版本对照表
  • 在命令行输入以下命令可以查看当前显卡驱动版本和最高支持的cuda版本:
nvidia-smi
输出结果
输出结果
  • 一般将显卡驱动更新到最新,这样将支持所有的cuda版本。更新显卡驱动可以安装Nvidia官方的GeForce Experience,要注册账号并登录,可以使用邮箱但要通过邮件验证。

1.1.2. 下载安装cuda

  • cuda版本的选择还与深度学习框架的版本有关,cuda版本不能过高,否则深度学习框架可能不支持,不过cuda中版本号向下兼容,比如cuda11.2可以当cuda11.1使用。
    • Tensorflow(官网)
cuda、python和tensorflow-gpu版本对照表
cuda、python和tensorflow-gpu版本对照表
    • PyTorch(官网)
      • torch版本与cuda、python版本没有严格的对应关系,只有大致的限制,python版本的选择一般为security的最低版本(Python维护周期查询),cuda版本一般不选最高,选tensorflow最新支持的版本,这样可以同时使用,不过同一电脑可以安装多个不同版本的cuda,使用时只要修改环境变量中的CUDA_PATH为需要选择的cuda版本所在路径。
      • 注意选择GPU版本torch(版本名中有“+cuXXX”,XXX表示cuda版本),示例如下:
带cu的表示GPU版本
带cu的表示GPU版本
  • 确定下载哪个cuda版本后,去官网下载,选择小版本号最大的,比如11.2.x选择11.2.2,win11选择win10,运行下载好的安装程序,选择典型安装一路同意即可,中途遇到要安装Visual Studio可以不用管,因为这是nvidia推荐用它来开发C++和cuda程序。

1.1.3. 下载cudnn,将解压后文件复制到cuda目录下

下载cudnn需要登陆nvidia账号,也要邮件验证,下载链接,根据cuda版本选择,下载解压后将cudnn-windows-x86_64-xxxx_cudaxx-archive目录下的所有目录和文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXXX目录下。

1.2. 验证是否安装成功

可以通过以下命令查看当前正在使用的cuda版本:

nvcc -V
输出结果
输出结果

2. 配置conda环境

2.1. 安装anaconda

可以去官网,如果速度太慢可以选择清华镜像,选择最新版本,运行安装程序,选择默认编辑器,一路下一步即可。

2.2. conda换源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

2.3. 创建conda环境

在开始菜单找到Anaconda Prompt,点击运行,输入以下命令创建conda环境,python版本根据之前的版本对照选择,一般 为security的最低版本(Python维护周期查询):

conda create -n conda环境名 python=3.x -y

激活conda环境

conda activate conda环境名

2.4. pip换源

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

3. 配置深度学习框架

3.1. PyTorch

  • 根据之前的选择,直接在Anaconda Prompt相应conda虚拟环境下,执行类似以下命令:
pip install torch==x.x.x+cuXXX -f https://download.pytorch.org/whl/cuXXX
  • 测试pytorch是否可以使用cuda调用GPU

        运行python,按序执行以下命令:

>>> import torch
>>> torch.cuda.is_available()
True
>>> torch.cuda.get_device_name(0)
'NVIDIA GeForce GTX 1060'
  • 可能出现报错说numpy没装,执行以下命令可以解决:
pip install torch==x.x.x+cuXXX numpy

3.2. Tensorflow

  • 据之前的选择,直接在Anaconda Prompt相应conda虚拟环境下,执行类似以下命令:
pip install tensorflow-gpu==2.x.x
  • 测试tensorflow是否可以使用cuda调用GPU

        运行python,按序执行以下命令:

>>> import tensorflow as tf
>>> tf.config.list_physical_devices('GPU')
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
>>> tf.test.gpu_device_name()
2023-11-28 21:55:22.331757: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-11-28 21:55:23.819451: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /device:GPU:0 with 4620 MB memory:  -> device: 0, name: NVIDIA GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1
'/device:GPU:0'

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1266075.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2004-2022年上市公司托宾Q值数据

2004-2022年上市公司托宾Q值数据 1、时间:2004-2022年 2、指标:年份、股票代码、股票简称、行业名称、行业代码、省份、城市、区县、行政区划代码、城市代码、区县代码、首次上市年份、上市状态、托宾Q值 3、范围:上市公司 4、来源&#…

Redis 的过期策略都有哪些?

思考:假如redis的key过期之后,会立即删除吗? Redis对数据设置数据的有效时间,数据过期以后,就需要将数据从内存中删除掉。可以按照不同的规则进行删除,这种删除规则就被称之为数据的删除策略(数据过期策略…

leetcode:用栈实现队列(先进先出)

题目描述 题目链接:232. 用栈实现队列 - 力扣(LeetCode) 题目分析 我们先把之前写的数组栈的实现代码搬过来 用栈实现队列最主要的是实现队列先进先出的特点,而栈的特点是后进先出,那么我们可以用两个栈来实现&…

python与机器学习1,机器学习的一些基础知识概述(完善ing)

目录 1 AI ,ML,DL,NN 等等概念分类 1.1 人工智能、机器学习、深度学习、神经网络之间的关系: 1.2 人工智能的发展 2 ML机器学习的分类:SL, USL,RL 2.1 机器学习的分类 2.2 具体的应用举例 2.3 数据分类 3 关于阈值θ和偏移量b的由来 4 不同的激…

【LeetCode:1670. 设计前中后队列 | 数据结构设计】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

​无人机摄影测量

无人机摄影测量技术是传统航空摄影测量手段的有力补充,具有机动灵活、高效快速、精细准确、作业成本低、生产周期短、影像获取空间分辨率高、高危地区探测等优势。无人机与航空摄影测量相结合使得“无人机数字低空遥感”成为航空遥感领域的一个崭新发展方向。无人机…

【古月居《ros入门21讲》学习笔记】16_tf坐标系广播与监听的编程实现

目录 说明: 1. 实现过程(C) 创建功能包(C) 创建tf广播器代码(C) 创建tf监听器代码(C) 配置tf监听器与广播器代码编译规则 编译并运行 编译 运行 2. 实现过程&a…

全新仿某度文库网站源码/在线文库源码/文档分享平台网站源码/仿某度文库PHP源码

源码简介: 全新仿某度文库网站源码/在线文库源码,是以phpMySQL开发的,它是仿某度文库PHP源码。有功能免费文库网站 文档分享平台 实现文档上传下载及在线预览。 仿百度文库是一个以phpMySQL进行开发的免费文库网站源码。仿某度文库实现文档…

API网关

API网关的作用 下图显示了详细信息。 步骤 1 - 客户端向 API 网关发送 HTTP 请求。 步骤 2 - API 网关解析并验证 HTTP 请求中的属性。 步骤 3 - API 网关执行允许列表/拒绝列表检查。 步骤 4 - API 网关与身份提供商对话以进行身份​​验证和授权。 步骤 5 - 将速率限制规…

卓越进行时 | 西安交通大学校友莅临赛宁网安参观考察

近日,为了深入贯彻网络安全强国战略建设,积极发挥网络安全企业的先进作用,推动校企合作与协作共赢。西安交通大学领导携校友会来到赛宁网安网络安全卓越中心进行参观考察,为进一步的校企合作和产业孵化奠定基础。 活动期间&#…

考虑区域多能源系统集群协同优化的联合需求侧响应模型程序代码!

本程序参考中国电机工程学报论文《考虑区域多能源系统集群协同优化的联合需求侧响应模型》,文章使用关系矩阵来表示电、热、气的耦合关系,使用NSGA2方法对多目标优化方法进行求解,文章中考虑环境因素是目前研究的热点。程序中算例丰富&#x…

SEO工具-免费功能最全的5款SEO工具

随着互联网的蓬勃发展,搜索引擎优化(SEO)已经成为许多企业和个人网站必备的关键技能。然而,对于初学者或者运营小型网站的人来说,使用专业的SEO工具可能涉及较高的成本。在这篇文章中,我们将向您推荐五款高…

SELinux(一) 简介

首发公号:Rand_cs 前段时间的工作遇到了一些关于 SELinux 的问题,初次接触不熟悉此概念,导致当时配置策略时束手束脚,焦头烂额,为此去系统的学习了下 SELinux 的东西。聊 SELinux 之前,先来看看什么叫做访…

操作系统导论:生产者消费者

1. 全文摘自《操作系统导论》 写的挺好,就摘录下来 2. 生产者消费者问题

【论文复现】RoSteALS: Robust Steganography using Autoencoder Latent Space-2023-CVPR

代码链接:https://github.com/TuBui/RoSteALS 一定要按照dockerfile,requirements.txt和requirements2.txt配置环境 需要补充的库: pip安装:omegaconf slack slackclient bchlib (0.14.0版本) einops imagenet-c conda安装&…

0-1背包的初始化问题

题目链接 这道题的状态转移方程比较易于确定。dp[i][j]表示能放前i个物品的情况下,容量为j时能放物品的数量(这道题歌曲数量对应物品数量,容量对应时间)。 技巧(收获) 二维dp数组可以视情况优化为一维dp数组…

Linux命令中的符号

目录 1 管道符 | 1.1 | grep [要检索的东西] 1.2 echo | tee 2 重定向 2.1 输出重定向覆盖 > 2.2 输出重定向添加 >> 2.3 文件输入重定向 < 2.4 多行文本输入重定向 << 2.5 常用搭配 2.5.1 终端不显示 > /dev/null 1 管道符 | 我们…

springboot3.2 整合 mybatis-plus

springboot3.2 整合 mybatis-plus springboot3.2 正式发布了 迫不及待地的感受了一下 结果在整个mybatis-plus 的时候遇到了如下报错 java.lang.IllegalArgumentException: Invalid value type for attribute factoryBeanObjectType: java.lang.String. ____ _ …

中小型工厂如何进行数字化转型

随着科技的快速发展和市场竞争的日益激烈&#xff0c;中小型工厂面临着诸多挑战。为了提高生产效率、降低成本、优化资源配置&#xff0c;数字化转型已成为中小型工厂发展的必经之路。中小型工厂如何进行数字化转型呢&#xff1f; 一、明确数字化转型目标 在进行数字化转型之前…

YOLO改进系列之SKNet注意力机制

摘要 视皮层神经元的感受野大小受刺激的调节即对于不同的刺激&#xff0c;卷积核的大小应该不同&#xff0c;但在构建CNN时一般在同一层只采用一种卷积核&#xff0c;很少考虑因采用不同卷积核。于是SKNet被提出&#xff0c;在SKNet中&#xff0c;不同大小的感受视野&#xff…