通过STM32Cube配置完成基于I2C协议的AHT20温湿度传感器的数据采集

news2024/9/22 19:43:28

文章目录

  • 前言
  • 一、I2C协议
    • 1、应用
    • 2、组成
    • 3、软件I2C和硬件I2C
      • 3.1软件I2C
      • 3.2硬件I2C
  • 二、通过硬件I2C协议采集AHT20的数据
    • 1、配置项目
    • 2、配置代码
  • 三、效果
  • 四、总结
  • 五、参考资料


前言

  • 硬件:stm32f103c8t6 核心板
  • 软件:STM32CubeMX 6.4.0
  • 软件:keil5 mdk
  • 软件:野火串口调试助手

一、I2C协议

1、应用

I2C 通讯协议(Inter-Integrated Circuit)是由 Phiilps 公司开发的,由于它引脚少,硬件实现简单,可扩展性强,不需要 USART、CAN 等通讯协议的外部收发设备,现在被广泛地
使用在系统内多个集成电路(IC)间的通讯。

2、组成

最基本的是把它分为物理层和协议层
物理层规定通讯系统中具有机械、电子功能部分的特性,确保原始数据在物理媒体的传输。
协议层主要规定通讯逻辑,统一收发双方的数据打包、解包标准。简单来说物理层规定我们用嘴巴还是用肢体来交流,协议层则规定我们用中文还是英文来交流

- I2C 通讯设备之间的常用连接方式

在这里插入图片描述
- 物理层
I2C是一个支持设备的总线。可连接多个 I2C 通讯设备,支持多个通讯主机及多个通讯从机。对于I2C 总线,只使用两条总线线路,一条双向串行数据线(SDA) ,一条串行时钟线(SCL)。
- 协议层
I2C 的协议定义了通讯的起始和停止信号、数据有效性、响应、仲裁、时钟同步和地址广播等环节。

- STM32的I2C架构:
在这里插入图片描述

- 通讯的起止:
在这里插入图片描述

当 SCL 线是高电平时 SDA 线从高电平向低电平切换,这个情况表示通讯的起始。当 SCL 是高电平时 SDA 线由低电平向高电平切换,表示通讯的停止。起始和停止信号一般由主机产生。

  • 数据的有效性
    在这里插入图片描述

SDA 数据线在 SCL的每个时钟周期传输一位数据。传输时,SCL为高电平的时候 SDA表示的数据有效,即此时的 SDA为高电平时表示数据“1”,为低电平时表示数据“0”。当 SCL为低电平时,SDA的数据无效,一般在这个时候 SDA进行电平切换,为下一次表示数据做好准备。

  • 响应
    在这里插入图片描述

I2C 的数据和地址传输都带响应。响应包括“应答(ACK)”和“非应答(NACK)”两种信号。作为数据接收端时,当设备(无论主从机)接收到 I2C 传输的一个字节数据或地址后,若希望对方继续发送数据需要向对方发送“应答(ACK)”信号,发送方会继续发送下一个数据;若接收端希望结束数据传输,则向对方发送“非应答(NACK)”信号,发送方接收到该信号后会产生一个停止信号,结束信号传输。

3、软件I2C和硬件I2C

3.1软件I2C

通过CPU 控制每个时刻的引脚状态来控制 GPIO 引脚电平产生通讯时序的方式称为软件I2C。

3.2硬件I2C

STM32 的 I2C 片上外设专门负责实现 I2C 通讯协议,只要配置好该外设,它就会自动根据协议要求产生通讯信号,收发数据并缓存起来,CPU只要检测该外设的状态和访问数据寄存器,就能完成数据收发。这种通过外设进行数据收发的方式称为硬件I2C。
- 差别

硬件 I2C 直接使用外设来控制引脚,可以减轻 CPU 的负担。不过使用硬件I2C 时必须使用某些固定的引脚作为 SCL 和 SDA,软件模拟 I2C 则可以使用任意 GPIO 引脚,相对比较灵活。对于硬件I2C用法比较复杂,软件I2C的流程更清楚一些。如果要详细了解I2C的协议,使用软件I2C可能更好的理解这个过程。在使用I2C过程,硬件I2C可能通信更加快,更加稳定。

二、通过硬件I2C协议采集AHT20的数据

1、配置项目

默认你已经创建了一个新项目

  • 时钟RCC配置,将HSE选为外部晶振模式

在这里插入图片描述

  • SYS设置,选择Serial Wire模式。

在这里插入图片描述

  • 设置USART
    在这里插入图片描述
  • 设置允许中断

在这里插入图片描述

  • I2C设置
    在这里插入图片描述
  • 设置DMA模式
    在这里插入图片描述
    在这里插入图片描述
  • RCC时钟
    在这里插入图片描述

设置工程路径、工程名,最后导出文件。使用keil打开并进行编写。

2、配置代码

  • 新建一个文件夹,里面放置两个文件:

AHT20-21_DEMO_V1_3.c和AHT20-21_DEMO_V1_3.h

然后通过小方块创建一个工程文件夹,将刚刚的两个文件添加进来,后面需要进行修改.
在这里插入图片描述

  • 导入文件路径

复制前面新建的文件夹路径

在这里插入图片描述

设置文件路径

在这里插入图片描述
在这里插入图片描述
将刚刚文件路径放在最后步骤2那里,然后一致点击ok返回。

  • 因为后面重写了prntf函数,需要勾选允许微库。
    在这里插入图片描述

  • 修改AHT20-21_DEMO_V1_3.h文件

#ifndef _AHT20_DEMO_
#define _AHT20_DEMO_

#include "main.h"  

void Delay_N10us(uint32_t t);//延时函数
void SensorDelay_us(uint32_t t);//延时函数
void Delay_4us(void);		//延时函数
void Delay_5us(void);		//延时函数
void Delay_1ms(uint32_t t);	
void AHT20_Clock_Init(void);		//延时函数
void SDA_Pin_Output_High(void)  ; //将PB15配置为输出 , 并设置为高电平, PB15作为I2C的SDA
void SDA_Pin_Output_Low(void);  //将P15配置为输出  并设置为低电平
void SDA_Pin_IN_FLOATING(void);  //SDA配置为浮空输入
void SCL_Pin_Output_High(void); //SCL输出高电平,P14作为I2C的SCL
void SCL_Pin_Output_Low(void); //SCL输出低电平
void Init_I2C_Sensor_Port(void); //初始化I2C接口,输出为高电平
void I2C_Start(void);		 //I2C主机发送START信号
void AHT20_WR_Byte(uint8_t Byte); //往AHT20写一个字节
uint8_t AHT20_RD_Byte(void);//从AHT20读取一个字节
uint8_t Receive_ACK(void);   //看AHT20是否有回复ACK
void Send_ACK(void)	;	  //主机回复ACK信号
void Send_NOT_ACK(void);	//主机不回复ACK
void Stop_I2C(void);	  //一条协议结束
uint8_t AHT20_Read_Status(void);//读取AHT20的状态寄存器
uint8_t AHT20_Read_Cal_Enable(void);  //查询cal enable位有没有使能
void AHT20_SendAC(void); //向AHT20发送AC命令
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num);
void AHT20_Read_CTdata(uint32_t *ct); //没有CRC校验,直接读取AHT20的温度和湿度数据
void AHT20_Read_CTdata_crc(uint32_t *ct); //CRC校验后,读取AHT20的温度和湿度数据
void AHT20_Init(void);   //初始化AHT20
void JH_Reset_REG(uint8_t addr);///重置寄存器
void AHT20_Start_Init(void);///上电初始化进入正常测量状态
#endif
  • 修改AHT20-21_DEMO_V1_3.c文件
/*******************************************/
/*@版权所有:广州奥松电子有限公司          */
/*@作者:温湿度传感器事业部                */
/*@版本:V1.2                              */
/*******************************************/
//#include "main.h" 
#include "AHT20-21_DEMO_V1_3.h" 
#include "gpio.h"
#include "i2c.h"


void Delay_N10us(uint32_t t)//延时函数
{
  uint32_t k;

   while(t--)
  {
    for (k = 0; k < 2; k++);//110
  }
}

void SensorDelay_us(uint32_t t)//延时函数
{
		
	for(t = t-2; t>0; t--)
	{
		Delay_N10us(1);
	}
}

void Delay_4us(void)		//延时函数
{	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
}
void Delay_5us(void)		//延时函数
{	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);

}

void Delay_1ms(uint32_t t)		//延时函数
{
   while(t--)
  {
    SensorDelay_us(1000);//延时1ms
  }
}


//void AHT20_Clock_Init(void)		//延时函数
//{
//	RCC_APB2PeriphClockCmd(CC_APB2Periph_GPIOB,ENABLE);
//}

void SDA_Pin_Output_High(void)   //将PB7配置为输出 , 并设置为高电平, PB7作为I2C的SDA
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);
}

void SDA_Pin_Output_Low(void)  //将P7配置为输出  并设置为低电平
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_RESET);
}

void SDA_Pin_IN_FLOATING(void)  //SDA配置为浮空输入
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_INPUT;//浮空
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init( GPIOB,&GPIO_InitStruct);
}


void SCL_Pin_Output_High(void) //SCL输出高电平,P14作为I2C的SCL
{
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_SET);
}

void SCL_Pin_Output_Low(void) //SCL输出低电平
{
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
}

void Init_I2C_Sensor_Port(void) //初始化I2C接口,输出为高电平
{	
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_SET);

	
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_6;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_SET);
	
}
void I2C_Start(void)		 //I2C主机发送START信号
{
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();
	SensorDelay_us(8);
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
}


void AHT20_WR_Byte(uint8_t Byte) //往AHT20写一个字节
{
	uint8_t Data,N,i;	
	Data=Byte;
	i = 0x80;
	for(N=0;N<8;N++)
	{
		SCL_Pin_Output_Low(); 
		Delay_4us();	
		if(i&Data)
		{
			SDA_Pin_Output_High();
		}
		else
		{
			SDA_Pin_Output_Low();
		}	
			
    SCL_Pin_Output_High();
		Delay_4us();
		Data <<= 1;
		 
	}
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
}	


uint8_t AHT20_RD_Byte(void)//从AHT20读取一个字节
{
		uint8_t Byte,i,a;
	Byte = 0;
	SCL_Pin_Output_Low();
	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	
	for(i=0;i<8;i++)
	{
    SCL_Pin_Output_High();
		
		Delay_5us();
		a=0;
		
		//if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_15)) a=1;
		if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7)) a=1;
		Byte = (Byte<<1)|a;
		
		//SCL_Pin_Output_Low();
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
		Delay_5us();
	}
  SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	return Byte;
}


uint8_t Receive_ACK(void)   //看AHT20是否有回复ACK
{
	uint16_t CNT;
	CNT = 0;
	SCL_Pin_Output_Low();	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);	
	while((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7))  && CNT < 100) 
	CNT++;
	if(CNT == 100)
	{
		return 0;
	}
 	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	return 1;
}

void Send_ACK(void)		  //主机回复ACK信号
{
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	SDA_Pin_Output_Low();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);
}

void Send_NOT_ACK(void)	//主机不回复ACK
{
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);		
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
    SDA_Pin_Output_Low();
	SensorDelay_us(8);
}

void Stop_I2C(void)	  //一条协议结束
{
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
}

uint8_t AHT20_Read_Status(void)//读取AHT20的状态寄存器
{

	uint8_t Byte_first;	
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	return Byte_first;
}

uint8_t AHT20_Read_Cal_Enable(void)  //查询cal enable位有没有使能
{
	uint8_t val = 0;//ret = 0,
  val = AHT20_Read_Status();
	 if((val & 0x68)==0x08)
		 return 1;
   else  return 0;
 }

void AHT20_SendAC(void) //向AHT20发送AC命令
{

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xac);//0xAC采集命令
	Receive_ACK();
	AHT20_WR_Byte(0x33);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

}

//CRC校验类型:CRC8/MAXIM
//多项式:X8+X5+X4+1
//Poly:0011 0001  0x31
//高位放到后面就变成 1000 1100 0x8c
//C现实代码:
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num)
{
	uint8_t i;
	uint8_t byte;
	uint8_t crc=0xFF;
  for(byte=0; byte<Num; byte++)
  {
    crc^=(message[byte]);
    for(i=8;i>0;--i)
    {
      if(crc&0x80) crc=(crc<<1)^0x31;
      else crc=(crc<<1);
    }
  }
        return crc;
}

void AHT20_Read_CTdata(uint32_t *ct) //没有CRC校验,直接读取AHT20的温度和湿度数据
{
		volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	 uint32_t RetuData = 0;
	uint16_t cnt = 0;
	AHT20_SendAC();//向AHT10发送AC命令
	Delay_1ms(80);//延时80ms左右	
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))//直到状态bit[7]为0,表示为空闲状态,若为1,表示忙状态
	{
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
		 break;
		 }
	}
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_1th = AHT20_RD_Byte();//状态字,查询到状态为0x98,表示为忙状态,bit[7]为1;状态为0x1C,或者0x0C,或者0x08表示为空闲状态,bit[7]为0
	Send_ACK();
	Byte_2th = AHT20_RD_Byte();//湿度
	Send_ACK();
	Byte_3th = AHT20_RD_Byte();//湿度
	Send_ACK();
	Byte_4th = AHT20_RD_Byte();//湿度/温度
	Send_ACK();
	Byte_5th = AHT20_RD_Byte();//温度
	Send_ACK();
	Byte_6th = AHT20_RD_Byte();//温度
	Send_NOT_ACK();
	Stop_I2C();

	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;//湿度
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData; //温度

}


void AHT20_Read_CTdata_crc(uint32_t *ct) //CRC校验后,读取AHT20的温度和湿度数据
{
		volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	volatile uint8_t  Byte_7th=0;
	 uint32_t RetuData = 0;
	 uint16_t cnt = 0;
	// uint8_t  CRCDATA=0;
	 uint8_t  CTDATA[6]={0};//用于CRC传递数组
	
	AHT20_SendAC();//向AHT10发送AC命令
	Delay_1ms(80);//延时80ms左右	
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))//直到状态bit[7]为0,表示为空闲状态,若为1,表示忙状态
	{
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
		 break;
		}
	}
	
	I2C_Start();

	AHT20_WR_Byte(0x71);
	Receive_ACK();
	CTDATA[0]=Byte_1th = AHT20_RD_Byte();//状态字,查询到状态为0x98,表示为忙状态,bit[7]为1;状态为0x1C,或者0x0C,或者0x08表示为空闲状态,bit[7]为0
	Send_ACK();
	CTDATA[1]=Byte_2th = AHT20_RD_Byte();//湿度
	Send_ACK();
	CTDATA[2]=Byte_3th = AHT20_RD_Byte();//湿度
	Send_ACK();
	CTDATA[3]=Byte_4th = AHT20_RD_Byte();//湿度/温度
	Send_ACK();
	CTDATA[4]=Byte_5th = AHT20_RD_Byte();//温度
	Send_ACK();
	CTDATA[5]=Byte_6th = AHT20_RD_Byte();//温度
	Send_ACK();
	Byte_7th = AHT20_RD_Byte();//CRC数据
	Send_NOT_ACK();                           //注意: 最后是发送NAK
	Stop_I2C();
	
	if(Calc_CRC8(CTDATA,6)==Byte_7th)
	{
	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;//湿度
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData; //温度
		
	}
	else
	{
		ct[0]=0x00;
		ct[1]=0x00;//校验错误返回值,客户可以根据自己需要更改
	}//CRC数据
}


void AHT20_Init(void)   //初始化AHT20
{	
	Init_I2C_Sensor_Port();
	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xa8);//0xA8进入NOR工作模式
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(10);//延时10ms左右

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xbe);//0xBE初始化命令,AHT20的初始化命令是0xBE,   AHT10的初始化命令是0xE1
	Receive_ACK();
	AHT20_WR_Byte(0x08);//相关寄存器bit[3]置1,为校准输出
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();
	Delay_1ms(10);//延时10ms左右
}
void JH_Reset_REG(uint8_t addr)
{
	
	uint8_t Byte_first,Byte_second,Byte_third;
	I2C_Start();
	AHT20_WR_Byte(0x70);//原来是0x70
	Receive_ACK();
	AHT20_WR_Byte(addr);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(5);//延时5ms左右
	I2C_Start();
	AHT20_WR_Byte(0x71);//
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_ACK();
	Byte_second = AHT20_RD_Byte();
	Send_ACK();
	Byte_third = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	
  Delay_1ms(10);//延时10ms左右
	I2C_Start();
	AHT20_WR_Byte(0x70);///
	Receive_ACK();
	AHT20_WR_Byte(0xB0|addr);寄存器命令
	Receive_ACK();
	AHT20_WR_Byte(Byte_second);
	Receive_ACK();
	AHT20_WR_Byte(Byte_third);
	Receive_ACK();
	Stop_I2C();
	
	Byte_second=0x00;
	Byte_third =0x00;
}

void AHT20_Start_Init(void)
{
	JH_Reset_REG(0x1b);
	JH_Reset_REG(0x1c);
	JH_Reset_REG(0x1e);
}
  • 将main.c文件里main函数包括上面的头文件等信息删除,换成下面代码
#include "main.h"
#include "dma.h"
#include "i2c.h"
#include "usart.h"
#include "gpio.h"
#include "AHT20-21_DEMO_V1_3.h" 
#include <stdio.h>
#include <string.h>
int fputc(int ch,FILE *f)//重新printf
{
    HAL_UART_Transmit(&huart1,(uint8_t *)&ch,1,0xFFFF);    
		while(__HAL_UART_GET_FLAG(&huart1,UART_FLAG_TC)!=SET){
		}		
    return ch;
}
void SystemClock_Config(void);
volatile int  c1,t1;
uint32_t CT_data[2]={0,0};
int main(void)
{
  HAL_Init();
  SystemClock_Config();
  MX_USART1_UART_Init();
  MX_DMA_Init();
  MX_I2C1_Init();	
	AHT20_Init();//放在其它之后
  if((AHT20_Read_Status()&0x18)!=0x18)
	{
		AHT20_Start_Init(); //重新初始化寄存器
		Delay_1ms(10);
	}


  while (1)
  {
   
		AHT20_Read_CTdata(CT_data);       //不经过CRC校验,直接读取AHT20的温度和湿度数据    推荐每隔大于1S读一次
    //AHT20_Read_CTdata_crc(CT_data);  //crc校验后,读取AHT20的温度和湿度数据 
	  c1 = CT_data[0]*100*10/1024/1024;  //计算得到湿度值c1(放大了10倍)
	  t1 = CT_data[1]*200*10/1024/1024-500;//计算得到温度值t1(放大了10倍)	
		printf("湿度:%d%s",c1/10,"%");
	  printf("温度:%d%s",t1/10,"℃");
	  printf("\r\n");
		HAL_Delay(3000);

  }
 
}

编译烧录均无问题

三、效果

在这里插入图片描述

20221116_233110


四、总结

学习了IIC协议,清楚协议大致流程。第一次使用传感器进行实验,感觉很酷。也是第一次调用厂商的代码,并且通过STM32Cube进行配置相当方便,这样应该是以后工作的常态吧(使用厂商的代码)。

五、参考资料

https://blog.csdn.net/qq_43279579/article/details/111597278
https://blog.csdn.net/Mouer__/article/details/121514102

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/12660.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java常见集合框架的区别

1.说说有哪些常见集合&#xff1f; 集合相关类和接口都在java.util中&#xff0c;主要分为3种&#xff1a;List&#xff08;列表&#xff09;、Map&#xff08;映射&#xff09;、Set(集)。 Java集合主要关系 其中Collection是集合List、Set的父接口&#xff0c;它主要有两个子…

澳大利亚博士后招聘|国立大学—太阳能电池方向

【国外博士后招聘-知识人网】澳大利亚国立大学博士后—太阳能电池方向 澳大利亚国立大学&#xff08;The Australian National University&#xff09;&#xff0c;简称ANU&#xff0c;始建于1946年&#xff0c;坐落于澳大利亚首都堪培拉&#xff0c;是公立研究型综合类大学&am…

Ernie-SimCSE对比学习在内容反作弊上应用

作者 | ANTI 导读 AI技术在不同行业和业务被广泛的应用&#xff0c;本文介绍了反作弊团队在与spammer对抗愈演愈烈的趋势下&#xff0c;不断探索前沿技术&#xff0c;将百度NLP预训练模型结合对比学习用于解决spam内容中知道提问群发推广作弊的技术方案。 本次分享&#xff0c;…

从单车智能到车路协同,均胜电子正在加快智能驾驶商业化进程

进入2022年&#xff0c;自动驾驶迈入了商业化的关键期&#xff0c;但市场分层也开始越来越明显。 一方面&#xff0c;L2级及以上智能辅助驾驶的搭载量在不断攀升&#xff0c;未来将成为量产车的标准配置。根据《高工智能汽车研究院》数据显示&#xff0c;今年1-9月前装标配搭载…

基于python的停车场管理系统的设计与实现/智能停车管理系统

摘要 车位信息是停车场供应用户必不可少的一个部分。在停车场发展的整个过程中&#xff0c;车位信息担负着最重要的角色。为满足如今日益复杂的管理需求&#xff0c;各类系统管理程序也在不断改进。本课题所设计的停车场管理系统&#xff0c;使用Django框架&#xff0c;Python语…

Linux学习-37-查看文件系统硬盘信息(df、du命令)

10.2 df用法详解&#xff1a;查看文件系统硬盘使用情况 Linux 磁盘管理好坏直接关系到整个系统的性能问题。df &#xff08;disk free&#xff09;命令&#xff0c;检查文件系统的磁盘空间占用情况&#xff0c;包括文件系统所在硬盘分区的总容量、已使用的容量、剩余容量等。 …

[附源码]Python计算机毕业设计bugbase管理系统

项目运行 环境配置&#xff1a; Pychram社区版 python3.7.7 Mysql5.7 HBuilderXlist pipNavicat11Djangonodejs。 项目技术&#xff1a; django python Vue 等等组成&#xff0c;B/S模式 pychram管理等等。 环境需要 1.运行环境&#xff1a;最好是python3.7.7&#xff0c;…

Div3 cf1741

Cf1741 文章目录A. Compare T-Shirt SizesB. Funny Permutation&#xff08;思维&#xff09;C. Minimize the Thickness&#xff08;&#xff09;A. Compare T-Shirt Sizes 题意: 第一行&#xff0c;输入测试样例个数n&#xff0c;接下来n行输入 &#xff0c;输入a和b代表衣服…

【自然语言处理(NLP)】基于注意力机制的英文新闻标题生成

【自然语言处理&#xff08;NLP&#xff09;】基于注意力机制的英文新闻标题生成 作者简介&#xff1a;在校大学生一枚&#xff0c;华为云享专家&#xff0c;阿里云专家博主&#xff0c;腾云先锋&#xff08;TDP&#xff09;成员&#xff0c;云曦智划项目总负责人&#xff0c;全…

SpringBoot+Vue项目宠物猫店管理系统的设计与实现

文末获取源码 开发语言&#xff1a;Java 使用框架&#xff1a;spring boot 前端技术&#xff1a;JavaScript、Vue 、css3 开发工具&#xff1a;IDEA/MyEclipse/Eclipse、Visual Studio Code 数据库&#xff1a;MySQL 5.7/8.0 数据库管理工具&#xff1a;phpstudy/Navicat JDK版…

[附源码]java毕业设计篮球俱乐部管理系统

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

Flume部署实验

目录一、实验介绍1.1实验内容1.2实验知识点1.3实验环境1.4实验资源1.5实验步骤清单二、实训架构三、实验环境准备四、实验步骤4.1Flume部署4.1.1配置hosts文件及zookeeper的myid4.1.2安装Flume4.1.3验证Flume五、实验总结一、实验介绍 1.1实验内容 本实验包括分布式海量日志采…

Axure 学习:简单的下拉菜单为什么做不好?

​很多同学在学习axure的时候&#xff0c;总是会发现有的时候明明看起来很简单的内容&#xff0c;却怎么也做不好&#xff0c;总是会出现这样或那样的问题。 原因是细节。有的同学没有注意到细节&#xff0c;忽略了&#xff0c;造成做好的内容总是存在一些小问题。本文以一个交…

【FLASH存储器系列十】ONFI数据接口的时序参数与时序图

目录 1.1 时序参数 1.2 时序图详解 1.2.1命令锁存时序 1.2.2地址锁存时序 1.2.3数据输入时序 1.2.4数据输出时序 1.2.5数据输出时序&#xff08;EDO&#xff09; 1.2.6读状态时序 1.1 时序参数 ONFI协议中明确规定了时序参数的范围&#xff0c;如果不满足要求的最小和最…

赞奇科技英特尔共图视觉计算“云”上大作为

作为物理世界与虚拟世界 “数实交融” 的重要桥梁&#xff0c;视觉计算已经成为建筑设计、VR/AR、互动游戏、影视动漫、工业设计等行业领域赖以发展的关键计算形式&#xff0c;通过图像初始略图、三维重建等方式&#xff0c;将事物与场景特征以图片、视频等视觉方式表现出来&am…

Nginx高可用

在生产环境上很多时候是以Nginx做反向代理对外提供服务&#xff0c;但是Nginx难免遇见故障&#xff0c;如&#xff1a;服务器宕机。当Nginx宕机那么所有对外提供的接口都将导致无法访问。因此需要两台以上的Nginx服务器对外提供服务&#xff0c;这样的话就可以解决其中一台宕机…

再探Kotlin 跨平台——迁移Paging分页库至KMM

前言 KMM的发展除了靠官方社区的支持外&#xff0c;一些大企业的开源落地也尤为重要。从这些开源中我们需要借鉴他的设计思想和实现方式。从而在落地遇到问题时&#xff0c;寻得更多的解决办法。 上周&#xff0c;Square正式将Paging分页库迁移到了Kotlin Multiplatform平台&…

目标检测论文解读复现之十:基于YOLOv5的遥感图像目标检测

前言 此前出了目标改进算法专栏&#xff0c;但是对于应用于什么场景&#xff0c;需要什么改进方法对应与自己的应用场景有效果&#xff0c;并且多少改进点能发什么水平的文章&#xff0c;为解决大家的困惑&#xff0c;此系列文章旨在给大家解读最新目标检测算法论文&#xff0c…

接上篇文章,完成Hadoop集群部署实验

这里写目录标题一、实验介绍1.1 实验内容1.2 实验知识点1.3 实验环境1.4 实验资源1.5 实验步骤清单二、实验架构三、实验环境准备四、实验步骤4.1 查看环境4.2部署Hadoop集群4.2.1安装hadoop(master)4.2.2创建hdfs数据文件存储目录(master)4.2.3修改配置文件(master)4.2.4主从节…

项目管理:团队执行力差,管理不善是根源

为什么说团队执行力差&#xff0c;多半是管理者的问题&#xff1f;如何提高团队的执行力&#xff1f; 1、员工不知道该做什么 项目开始一段时间&#xff0c;员工都还没弄清楚该做什么&#xff0c;是什么职位啊&#xff1f;为什么会产生这样的问题呢&#xff1f; 这是因为管理…