前言:Hello大家好,我是小哥谈。SCConv是一种用于减少特征冗余的卷积神经网络模块。相对于其他流行的SOTA方法,SCConv可以以更低的计算成本获得更高的准确率。它通过在空间和通道维度上进行重构,从而减少了特征图中的冗余信息。这种模块的设计可以提高卷积神经网络的性能。🌈
前期回顾:
YOLOv5算法进阶改进(1)— 改进数据增强方式 + 添加CBAM注意力机制
前言:Hello大家好,我是小哥谈。SCConv是一种用于减少特征冗余的卷积神经网络模块。相对于其他流行的SOTA方法,SCConv可以以更低的计算成本获得更高的准确率。它通过在空间和通道维度上进行重构,从而减少了特征图中的冗余信息。这种模块的设计可以提高卷积神经网络的性能。🌈
前期回顾:
YOLOv5算法进阶改进(1)— 改进数据增强方式 + 添加CBAM注意力机制
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1263976.html
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!