竞赛选题 题目:基于机器视觉的图像矫正 (以车牌识别为例) - 图像畸变校正

news2024/11/24 0:28:40

文章目录

  • 0 简介
  • 1 思路简介
    • 1.1 车牌定位
    • 1.2 畸变校正
  • 2 代码实现
    • 2.1 车牌定位
      • 2.1.1 通过颜色特征选定可疑区域
      • 2.1.2 寻找车牌外围轮廓
      • 2.1.3 车牌区域定位
    • 2.2 畸变校正
      • 2.2.1 畸变后车牌顶点定位
      • 2.2.2 校正
  • 7 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于机器视觉的图像矫正 (以车牌识别为例)

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 思路简介

目前车牌识别系统在各小区门口随处可见,识别效果貌似都还可以。查阅资料后,发现整个过程又可以细化为车牌定位、畸变校正、车牌分割和内容识别四部分。本篇随笔主要介绍车牌定位及畸变校正两部分,在python环境下通过opencv实现。

1.1 车牌定位

目前主流的车牌定位方法从大的方面来说可以分为两类:一种是基于车牌的背景颜色特征;另一种基于车牌的轮廓形状特征。基于颜色特征的又可分为两类:一种在RGB空间识别,另一种在HSV空间识别。经测试后发现,单独使用任何一种方法,效果均不太理想。目前比较普遍的做法是几种定位方法同时使用,或用一种识别,另一种验证。本文主要通过颜色特征对车牌进行定位,以HSV空间的H分量为主,以RGB空间的R分量和B分量为辅,后续再用车牌的长宽比例排除干扰。

1.2 畸变校正

在车牌的图像采集过程中,相机镜头通常都不是垂直于车牌的,所以待识别图像中车牌或多或少都会有一定程度的畸变,这给后续的车牌内容识别带来了一定的困难。因此需要对车牌进行畸变校正,消除畸变带来的不利影响。

2 代码实现

2.1 车牌定位

2.1.1 通过颜色特征选定可疑区域

取了不同光照环境下车牌的图像,截取其背景颜色,利用opencv进行通道分离和颜色空间转换,经试验后,总结出车牌背景色的以下特征:

  • (1)在HSV空间下,H分量的值通常都在115附近徘徊,S分量和V分量因光照不同而差异较大(opencv中H分量的取值范围是0到179,而不是图像学中的0到360;S分量和V分量的取值范围是到255);

  • (2)在RGB空间下,R分量通常较小,一般在30以下,B分量通常较大,一般在80以上,G分量波动较大;

  • (3)在HSV空间下对图像进行补光和加饱和度处理,即将图像的S分量和V分量均置为255,再进行色彩空间转换,由HSV空间转换为RGB空间,发现R分量全部变为0,B分量全部变为255(此操作会引入较大的干扰,后续没有使用)。

根据以上特征可初步筛选出可疑的车牌区域。随后对灰度图进行操作,将可疑位置的像素值置为255,其他位置的像素值置为0,即根据特征对图像进行了二值化。二值化图像中,可疑区域用白色表示,其他区域均为黑色。随后可通过膨胀腐蚀等操作对图像进一步处理。

for i in range(img_h):
    for j in range(img_w):
        # 普通蓝色车牌,同时排除透明反光物质的干扰
        if ((img_HSV[:, :, 0][i, j]-115)**2 < 15**2) and (img_B[i, j] > 70) and (img_R[i, j] < 40):
            img_gray[i, j] = 255
        else:
            img_gray[i, j] = 0

在这里插入图片描述

2.1.2 寻找车牌外围轮廓

选定可疑区域并将图像二值化后,一般情况下,图像中就只有车牌位置的像素颜色为白,但在一些特殊情况下还会存在一些噪声。如上图所示,由于图像右上角存在蓝色支架,与车牌颜色特征相符,因此也被当做车牌识别了出来,由此引入了噪声。

经过观察可以发现,车牌区域与噪声之间存在较大的差异,且车牌区域特征比较明显:

  • (1)根据我国常规车牌的形状可知,车牌的形状为扁平矩形,长宽比约为3:1;

  • (2)车牌区域面积远大于噪声区域,一般为图像中最大的白色区域。

在这里插入图片描述

可以通过cv2.findContours()函数寻找二值化后图像中白色区域的轮廓。

注意:在opencv2和opencv4中,cv2.findContours()的返回值有两个,而在opencv3中,返回值有3个。视opencv版本不同,代码的写法也会存在一定的差异。

# 检测所有外轮廓,只留矩形的四个顶点
# opencv4.0, opencv2.x
contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# opencv3.x
_, contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

这里,因为二值化图像中共有三块白色区域(车牌及两处噪声),因此返回值contours为长度为3的list。list内装有3个array,每个array内各存放着一块白色区域的轮廓信息。每个array的shape均为(n,
1, 2),即每个array存放着对应白色区域轮廓上n个点的坐标。

目前得到了3个array,即3组轮廓信息,但我们并不清楚其中哪个是车牌区域对应的那一组轮廓信息。此时可以根据车牌的上述特征筛选出车牌区域的轮廓。

#形状及大小筛选校验
det_x_max = 0
det_y_max = 0
num = 0
for i in range(len(contours)):
    x_min = np.min(contours[i][ :, :, 0])
    x_max = np.max(contours[i][ :, :, 0])
    y_min = np.min(contours[i][ :, :, 1])
    y_max = np.max(contours[i][ :, :, 1])
    det_x = x_max - x_min
    det_y = y_max - y_min
    if (det_x / det_y > 1.8) and (det_x > det_x_max ) and (det_y > det_y_max ):
        det_y_max = det_y
        det_x_max = det_x
        num = i
# 获取最可疑区域轮廓点集
points = np.array(contours[num][:, 0])

最终得到的points的shape为(n, 2),即存放了n个点的坐标,这n个点均分布在车牌的边缘上

2.1.3 车牌区域定位

获取车牌轮廓上的点集后,可用cv2.minAreaRect()获取点集的最小外接矩形。返回值rect内包含该矩形的中心点坐标、高度宽度及倾斜角度等信息,使用cv2.boxPoints()可获取该矩形的四个顶点坐标。

# 获取最小外接矩阵,中心点坐标,宽高,旋转角度
rect = cv2.minAreaRect(points)
# 获取矩形四个顶点,浮点型
box = cv2.boxPoints(rect)
# 取整
box = np.int0(box)

但我们并不清楚这四个坐标点各对应着矩形的哪一个顶点,因此无法充分地利用这些坐标信息。

可以从坐标值的大小特征入手,将四个坐标与矩形的四个顶点匹配起来:在opencv的坐标体系下,纵坐标最小的是top_point,纵坐标最大的是bottom_point,
横坐标最小的是left_point,横坐标最大的是right_point。

# 获取四个顶点坐标
left_point_x = np.min(box[:, 0])
right_point_x = np.max(box[:, 0])
top_point_y = np.min(box[:, 1])
bottom_point_y = np.max(box[:, 1])

left_point_y = box[:, 1][np.where(box[:, 0] == left_point_x)][0]
right_point_y = box[:, 1][np.where(box[:, 0] == right_point_x)][0]
top_point_x = box[:, 0][np.where(box[:, 1] == top_point_y)][0]
bottom_point_x = box[:, 0][np.where(box[:, 1] == bottom_point_y)][0]
# 上下左右四个点坐标
vertices = np.array([[top_point_x, top_point_y], [bottom_point_x, bottom_point_y], [left_point_x, left_point_y], [right_point_x, right_point_y]])

在这里插入图片描述
在这里插入图片描述

2.2 畸变校正

2.2.1 畸变后车牌顶点定位

要想实现车牌的畸变矫正,必须找到畸变前后对应点的位置关系。

可以看出,本是矩形的车牌畸变后变成了平行四边形,因此车牌轮廓和得出来的矩形轮廓并不契合。但有了矩形的四个顶点坐标后,可以通过简单的几何相似关系求出平行四边形车牌的四个顶点坐标。

在本例中,平行四边形四个顶点与矩形四个顶点之间有如下关系:矩形顶点Top_Point、Bottom_Point与平行四边形顶点new_top_point、new_bottom_point重合,矩形顶点Top_Point的横坐标与平行四边形顶点new_right_point的横坐标相同,矩形顶点Bottom_Point的横坐标与平行四边形顶点new_left_point的横坐标相同。

在这里插入图片描述

但事实上,由于拍摄的角度不同,可能出现两种不同的畸变情况。可以根据矩形倾斜角度的不同来判断具体是哪种畸变情况。

在这里插入图片描述

判断出具体的畸变情况后,选用对应的几何相似关系,即可轻易地求出平行四边形四个顶点坐标,即得到了畸变后车牌四个顶点的坐标。

要想实现车牌的校正,还需得到畸变前车牌四个顶点的坐标。因为我国车牌的标准尺寸为440X140,因此可规定畸变前车牌的四个顶点坐标分别为:(0,0),(440,0),(0,140),(440,140)。顺序上需与畸变后的四个顶点坐标相对应。

# 畸变情况1
if rect[2] > -45:
    new_right_point_x = vertices[0, 0]
    new_right_point_y = int(vertices[1, 1] - (vertices[0, 0]- vertices[1, 0]) / (vertices[3, 0] - vertices[1, 0]) * (vertices[1, 1] - vertices[3, 1]))
    new_left_point_x = vertices[1, 0]
    new_left_point_y = int(vertices[0, 1] + (vertices[0, 0] - vertices[1, 0]) / (vertices[0, 0] - vertices[2, 0]) * (vertices[2, 1] - vertices[0, 1]))
    # 校正后的四个顶点坐标
    point_set_1 = np.float32([[440, 0],[0, 0],[0, 140],[440, 140]])
# 畸变情况2
elif rect[2] < -45:
    new_right_point_x = vertices[1, 0]
    new_right_point_y = int(vertices[0, 1] + (vertices[1, 0] - vertices[0, 0]) / (vertices[3, 0] - vertices[0, 0]) * (vertices[3, 1] - vertices[0, 1]))
    new_left_point_x = vertices[0, 0]
    new_left_point_y = int(vertices[1, 1] - (vertices[1, 0] - vertices[0, 0]) / (vertices[1, 0] - vertices[2, 0]) * (vertices[1, 1] - vertices[2, 1]))
    # 校正后的四个顶点坐标
    point_set_1 = np.float32([[0, 0],[0, 140],[440, 140],[440, 0]])

# 校正前平行四边形四个顶点坐标
new_box = np.array([(vertices[0, 0], vertices[0, 1]), (new_left_point_x, new_left_point_y), (vertices[1, 0], vertices[1, 1]), (new_right_point_x, new_right_point_y)])
point_set_0 = np.float32(new_box)

2.2.2 校正

该畸变是由于摄像头与车牌不垂直而引起的投影造成的,因此可用cv2.warpPerspective()来进行校正。

# 变换矩阵
mat = cv2.getPerspectiveTransform(point_set_0, point_set_1)
# 投影变换
lic = cv2.warpPerspective(img, mat, (440, 140))

在这里插入图片描述


    import cv2
    import numpy as np
    
    # 预处理
    def imgProcess(path):
        img = cv2.imread(path)
        # 统一规定大小
        img = cv2.resize(img, (640,480))
        # 高斯模糊
        img_Gas = cv2.GaussianBlur(img,(5,5),0)
        # RGB通道分离
        img_B = cv2.split(img_Gas)[0]
        img_G = cv2.split(img_Gas)[1]
        img_R = cv2.split(img_Gas)[2]
        # 读取灰度图和HSV空间图
        img_gray = cv2.cvtColor(img_Gas, cv2.COLOR_BGR2GRAY)
        img_HSV = cv2.cvtColor(img_Gas, cv2.COLOR_BGR2HSV)
        return img, img_Gas, img_B, img_G, img_R, img_gray, img_HSV
    
    # 初步识别
    def preIdentification(img_gray, img_HSV, img_B, img_R):
        for i in range(480):
            for j in range(640):
                # 普通蓝色车牌,同时排除透明反光物质的干扰
                if ((img_HSV[:, :, 0][i, j]-115)**2 < 15**2) and (img_B[i, j] > 70) and (img_R[i, j] < 40):
                    img_gray[i, j] = 255
                else:
                    img_gray[i, j] = 0
        # 定义核
        kernel_small = np.ones((3, 3))
        kernel_big = np.ones((7, 7))
    
        img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0) # 高斯平滑
        img_di = cv2.dilate(img_gray, kernel_small, iterations=5) # 腐蚀5次
        img_close = cv2.morphologyEx(img_di, cv2.MORPH_CLOSE, kernel_big) # 闭操作
        img_close = cv2.GaussianBlur(img_close, (5, 5), 0) # 高斯平滑
        _, img_bin = cv2.threshold(img_close, 100, 255, cv2.THRESH_BINARY) # 二值化
        return img_bin
    
    # 定位
    def fixPosition(img, img_bin):
        # 检测所有外轮廓,只留矩形的四个顶点
        contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        #形状及大小筛选校验
        det_x_max = 0
        det_y_max = 0
        num = 0
        for i in range(len(contours)):
            x_min = np.min(contours[i][ :, :, 0])
            x_max = np.max(contours[i][ :, :, 0])
            y_min = np.min(contours[i][ :, :, 1])
            y_max = np.max(contours[i][ :, :, 1])
            det_x = x_max - x_min
            det_y = y_max - y_min
            if (det_x / det_y > 1.8) and (det_x > det_x_max ) and (det_y > det_y_max ):
                det_y_max = det_y
                det_x_max = det_x
                num = i
        # 获取最可疑区域轮廓点集
        points = np.array(contours[num][:, 0])
        return points

    #img_lic_canny = cv2.Canny(img_lic_bin, 100, 200)

    def findVertices(points):
        # 获取最小外接矩阵,中心点坐标,宽高,旋转角度
        rect = cv2.minAreaRect(points)
        # 获取矩形四个顶点,浮点型
        box = cv2.boxPoints(rect)
        # 取整
        box = np.int0(box)
        # 获取四个顶点坐标
        left_point_x = np.min(box[:, 0])
        right_point_x = np.max(box[:, 0])
        top_point_y = np.min(box[:, 1])
        bottom_point_y = np.max(box[:, 1])
    
        left_point_y = box[:, 1][np.where(box[:, 0] == left_point_x)][0]
        right_point_y = box[:, 1][np.where(box[:, 0] == right_point_x)][0]
        top_point_x = box[:, 0][np.where(box[:, 1] == top_point_y)][0]
        bottom_point_x = box[:, 0][np.where(box[:, 1] == bottom_point_y)][0]
        # 上下左右四个点坐标
        vertices = np.array([[top_point_x, top_point_y], [bottom_point_x, bottom_point_y], [left_point_x, left_point_y], [right_point_x, right_point_y]])
        return vertices, rect
    
    def tiltCorrection(vertices, rect):
        # 畸变情况1
        if rect[2] > -45:
            new_right_point_x = vertices[0, 0]
            new_right_point_y = int(vertices[1, 1] - (vertices[0, 0]- vertices[1, 0]) / (vertices[3, 0] - vertices[1, 0]) * (vertices[1, 1] - vertices[3, 1]))
            new_left_point_x = vertices[1, 0]
            new_left_point_y = int(vertices[0, 1] + (vertices[0, 0] - vertices[1, 0]) / (vertices[0, 0] - vertices[2, 0]) * (vertices[2, 1] - vertices[0, 1]))
            # 校正后的四个顶点坐标
            point_set_1 = np.float32([[440, 0],[0, 0],[0, 140],[440, 140]])
        # 畸变情况2
        elif rect[2] < -45:
            new_right_point_x = vertices[1, 0]
            new_right_point_y = int(vertices[0, 1] + (vertices[1, 0] - vertices[0, 0]) / (vertices[3, 0] - vertices[0, 0]) * (vertices[3, 1] - vertices[0, 1]))
            new_left_point_x = vertices[0, 0]
            new_left_point_y = int(vertices[1, 1] - (vertices[1, 0] - vertices[0, 0]) / (vertices[1, 0] - vertices[2, 0]) * (vertices[1, 1] - vertices[2, 1]))
            # 校正后的四个顶点坐标
            point_set_1 = np.float32([[0, 0],[0, 140],[440, 140],[440, 0]])
    
        # 校正前平行四边形四个顶点坐标
        new_box = np.array([(vertices[0, 0], vertices[0, 1]), (new_left_point_x, new_left_point_y), (vertices[1, 0], vertices[1, 1]), (new_right_point_x, new_right_point_y)])
        point_set_0 = np.float32(new_box)
        return point_set_0, point_set_1, new_box
    
    def transform(img, point_set_0, point_set_1):
        # 变换矩阵
        mat = cv2.getPerspectiveTransform(point_set_0, point_set_1)
        # 投影变换
        lic = cv2.warpPerspective(img, mat, (440, 140))
        return lic
    
    def main():
        path = 'F:\\Python\\license_plate\\test\\9.jpg'
        # 图像预处理
        img, img_Gas, img_B, img_G, img_R, img_gray, img_HSV = imgProcess(path)
        # 初步识别
        img_bin  = preIdentification(img_gray, img_HSV, img_B, img_R)
        points = fixPosition(img, img_bin)
        vertices, rect = findVertices(points)
        point_set_0, point_set_1, new_box = tiltCorrection(vertices, rect)
        img_draw = cv2.drawContours(img.copy(), [new_box], -1, (0,0,255), 3)
        lic = transform(img, point_set_0, point_set_1)
        # 原图上框出车牌
        cv2.namedWindow("Image")
        cv2.imshow("Image", img_draw)
        # 二值化图像
        cv2.namedWindow("Image_Bin")
        cv2.imshow("Image_Bin", img_bin)
        # 显示校正后的车牌
        cv2.namedWindow("Lic")
        cv2.imshow("Lic", lic)
        # 暂停、关闭窗口
        cv2.waitKey(0)
        cv2.destroyAllWindows()
    
    if __name__ == '__main__':
        main()



在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1262765.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

修改分区序列号的简单方法!

“我使用的是自己组装的电脑&#xff0c;安装了正版Win10操作系统。但奇怪的是&#xff0c;这台电脑看起来完全正常&#xff0c;但是每次启动时的分区序列号却总是不同。我现在要使用的软件需要依赖分区序列号进行注册&#xff0c;所以这个问题不解决我就没法使用软件。系统是正…

提升企业网络安全的得力助手——EventLog Analyzer网络日志管理

在当今数字化时代&#xff0c;企业的网络安全问题变得尤为重要。为了更好地应对日益增多的威胁和安全漏洞&#xff0c;企业需要一种高效的网络日志管理工具&#xff0c;EventLog Analyzer便是其中一款卓越的解决方案。 EventLog Analyzer EventLog Analyzer是一款综合性的网络…

户外园林气象环境RTU采集主机监测的具体使用

户外园林是人们休闲、娱乐和放松心情的场所&#xff0c;良好的气象环境对于提供舒适的户外体验至关重要。为了有效监测和管理园林的气象环境&#xff0c;户外园林气象环境RTU&#xff08;Remote Terminal Unit&#xff09;采集主机应运而生。本文将详细介绍户外园林气象环境RTU…

ELK高级搜索,深度详解ElasticStack技术栈-上篇

前言 1、黑马视频地址&#xff1a;java中级教程-ELK高级搜索&#xff0c;深度详解ElasticStack技术栈 2、本内容仅用于个人学习笔记&#xff0c;如有侵扰&#xff0c;联系删除 1. 课程简介 1.1 课程内容 ELK是包含但不限于Elasticsearch&#xff08;简称es&#xff09;、Lo…

【领域驱动设计 学习目标及大纲】从CRUD到架构设计

从2018年至今&#xff0c;已工作了5年有余&#xff0c;回望这5年的工作历程&#xff0c;虽然一直在学习、一直在积累&#xff0c;但其实都在术的层面上停留&#xff0c;也就是具体的技术点。这5年多的时间里其实也不是没有窥道的想法&#xff1a; 一次是2018年刚工作的时候&am…

软件提示找不到“vcruntime140.dll丢失的五个解决方法”(有效方法)

“vcruntime140.dll丢失的五个解决方法”。在我们的日常生活和工作中&#xff0c;有时候会遇到一些电脑问题&#xff0c;而vcruntime140.dll丢失就是其中之一。那么&#xff0c;什么是vcruntime140.dll文件呢&#xff1f;它为什么会丢失&#xff1f;又该如何解决这个问题呢&…

【产品设计】SaaS平台产品架构设计

产品架构是基于业务架构的&#xff0c;那么做产品架构前&#xff0c;需要对业务架构有哪些清晰的了解呢&#xff1f; 当我们去搜索“架构”&#xff0c;可以得到很多的架构图片&#xff0c;比如组织架构、业务架构、数据架构、技术架构、安全架构、产品架构、部署架构等。 什么…

计算4人队形的最可能分布

2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 3 3 3 x 3 3 2 2 2 1 2 2 2 2 2 1 2 2 在6*6的平面上2个点随机分布&#xff0c;有3种分布方式&#xff0c;2a1&#xff0c;2a2&#xff0c;2a3&#xff0c;占比为1&#xff1a;5&#xff1a;1. 3 3 …

附录11-math.h的常见方法

stdlib.h是做数学计算的头文件 目录 1 数学知识 1.1 弧度值/π 角度值/180 1.2 双曲函数 2 math.h 2.1 反余弦值 acos() 2.2 反正弦值 asin() 2.3 反正切值 atan() 2.4 两个数的反正切值 atan2() 2.5 向上取整 ceil() 2.6 余弦值 cos() 2.7 双曲余弦 c…

Python能否成为大型游戏开发的利器?

你是否曾想过&#xff0c;Python这个备受欢迎的编程语言是否能够胜任大型游戏开发的重任&#xff1f;Python以其简洁、易学的特点而著称&#xff0c;但在游戏世界中&#xff0c;性能和效率常常是关键。小编将带你深入探讨Python在大型游戏开发中的潜力&#xff0c;一探究竟&…

python 爬虫之 爬取网站信息并保存到文件

文章目录 前期准备探索该网页的HTML码的特点开始编写代码存入文件总的程序文件存储效果 前期准备 随便找个网站进行爬取&#xff0c;这里我选择的是(一个卖书的网站&#xff09; https://www.bookschina.com/24hour/62700000/ 我的目的是爬取这个网站的这个页面的书籍的名称以…

vue3中toRef创建一个ref对象

为源响应式对象上的某个属性创建一个 ref对象, 二者内部操作的是同一个数据值, 更新时二者是同步的 区别ref: 拷贝了一份新的数据值单独操作, 更新时相互不影响 应用: 当要将 某个prop 的 ref 传递给复合函数时&#xff0c;toRef 很有用 父组件代码: <template><…

关于同声传译设备租赁服务,你了解多少

据了解&#xff0c;同传设备通常出现在同声传译会议中&#xff0c;它能够提供实时的翻译服务&#xff0c;确保与会者能够准确地理解和沟通。举办同传会议&#xff0c;往往需要租用先进的同声传译设备。那么&#xff0c;北京同声传译设备租赁公司哪里比较专业呢&#xff1f; 同传…

[SWPU2019]你有没有好好看网课? 1

BUUCTF:https://buuoj.cn/challenges 题目描述&#xff1a; 得到的 flag 请包上 flag{} 提交。 密文&#xff1a; 下载附件&#xff0c;解压得到两个zip压缩包。 解题思路&#xff1a; 1、尝试flag2.zip无果。在查看flag3.zip时&#xff0c;找到关于密码的提示“呀&#xf…

万界星空科技生产管理mes系统种的工艺确认流程

MES工艺流程是制造执行系统的核心部分&#xff0c;它涵盖了整个生产过程&#xff0c;包括物料管理、生产计划、生产执行、质量管理、维修保养等方面&#xff0c;可以有效地提高生产效率和产品质量。 一、确认追溯模型&#xff1a; 以工艺文件为确认对象&#xff0c;以产品生产…

采用NTC进行温度测量典型电路

本文介绍采用NTC进行温度测量典型电路。 采用NTC进行温度测量的电路有多种&#xff0c;典型的有恒流法和恒压法。在一般要求不高的应用场合&#xff0c;恒压法用的比较多&#xff0c;本文介绍一种采用恒压法进行NTC温度测量电路。 1.原理图 原理图如下图所示&#xff1a; 此…

在Python中可视化CSV文件中的数据

CSV代表“逗号分隔值”。这意味着CSV文件中的数据&#xff08;值&#xff09;由分隔符分隔&#xff0c;即&#xff0c;逗号CSV文件中的数据以扩展名为. csv的表格格式存储。通常&#xff0c;CSV文件与Microsoft Excel工作表一起使用。CSV文件包含许多记录&#xff0c;数据分布在…

逆向 tg 发送图片

开发工具 工具名称工具类型说明AndroidStuduo编辑工具开发工具jadxjava工具将apk解成java项目xposed插件工具插件tg版本9.7.5 分析源码的点&#xff1a; 发送图片的点 获取sendMessageParams 获取TLRPC$TL_photo 回调 实现 public void sendImg(String path, String…

vue中:计算属性computed

1. 在computed中定义计算属性方法根据已有的数据进行计算返回一个要显示的新数据 2. 在页面中使用{{计算属性名}}来显示返回的数据 3. computed: 内部有缓存, 多处读取只计算一次 4. 计算属性默认相当于只有getter来根据已有数据计算返回一个新数据值, 也可以指定setter来监…

【测试开发】第五节.测试——自动化测试(Selenium工具)

作者简介&#xff1a;大家好&#xff0c;我是未央&#xff1b; 博客首页&#xff1a;未央.303 系列专栏&#xff1a;Java测试开发 每日一句&#xff1a;人的一生&#xff0c;可以有所作为的时机只有一次&#xff0c;那就是现在&#xff01;&#xff01;&#xff01; 前言 一、…