Seata简介与常用模式解决方案概述

news2024/12/23 13:39:41

Seata 是什么?

Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。

Seata事务管理中有三个重要的角色:

  • TC (Transaction Coordinator) - 事务协调者:维护全局和分支事务的状态,协调全局事务提交或回滚。

  • TM (Transaction Manager) - 事务管理器:定义全局事务的范围、开始全局事务、提交或回滚全局事务。

  • RM (Resource Manager) - 资源管理器:管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。

Seata基于上述架构提供了四种不同的分布式事务解决方案:

  • XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入

  • TCC模式:最终一致的分阶段事务模式,有业务侵入

  • AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式

  • SAGA模式:长事务模式,有业务侵入

无论哪种方案,都离不开TC,也就是事务的协调者。

AT 模式

前提

  • 基于支持本地 ACID 事务的关系型数据库。

  • Java 应用,通过 JDBC 访问数据库。

整体机制

两阶段提交协议的演变:

  • 一阶段:业务数据和回滚日志记录在同一个本地事务中提交,释放本地锁和连接资源。

  • 二阶段:

    • 提交异步化,非常快速地完成。

    • 回滚通过一阶段的回滚日志进行反向补偿。

写隔离

  • 一阶段本地事务提交前,需要确保先拿到全局锁

  • 拿不到全局锁,不能提交本地事务。

  • 全局锁的尝试被限制在一定范围内(一般为300ms),超出范围将放弃,并回滚本地事务,释放本地锁。

以一个示例来说明:

两个全局事务 tx1 和 tx2,分别对 a 表的 m 字段进行更新操作,m 的初始值 1000。

tx1 先开始,开启本地事务,拿到本地锁,更新操作 m = 1000 - 100 = 900。本地事务提交前,先拿到该记录的全局锁,本地提交释放本地锁。 tx2 后开始,开启本地事务,拿到本地锁,更新操作 m = 900 - 100 = 800。本地事务提交前,尝试拿该记录的全局锁,tx1 全局提交前,该记录的全局锁被 tx1 持有,tx2 需要重试等待全局锁

tx1 二阶段全局提交,释放全局锁。tx2 拿到全局锁提交本地事务。

如果 tx1 的二阶段全局回滚,则 tx1 需要重新获取该数据的本地锁,进行反向补偿的更新操作,实现分支的回滚。

此时,如果 tx2 仍在等待该数据的全局锁,同时持有本地锁,则 tx1 的分支回滚会失败。分支的回滚会一直重试,直到 tx2 的全局锁等锁超时,放弃全局锁并回滚本地事务释放本地锁,tx1 的分支回滚最终成功。

因为整个过程全局锁在 tx1 结束前一直是被 tx1 持有的,所以不会发生脏写的问题。

读隔离

在数据库本地事务隔离级别读已提交(Read Committed)或以上的基础上,Seata(AT 模式)的默认全局隔离级别是读未提交(Read Uncommitted)

如果应用在特定场景下,必需要求全局的读已提交,目前 Seata 的方式是通过 SELECT FOR UPDATE 语句的代理。

SELECT FOR UPDATE 语句的执行会申请全局锁,如果全局锁被其他事务持有,则释放本地锁(回滚 SELECT FOR UPDATE 语句的本地执行)并重试。这个过程中,查询是被 block 住的,直到全局锁拿到,即读取的相关数据是已提交的,才返回。

出于总体性能上的考虑,Seata 目前的方案并没有对所有 SELECT 语句都进行代理,仅针对 FOR UPDATE 的 SELECT 语句。

工作机制

以一个示例来说明整个 AT 分支的工作过程。

业务表:product

FieldTypeKey
idbigint(20)PRI
namevarchar(100)
sincevarchar(100)

AT 分支事务的业务逻辑:

update product set name = 'GTS' where name = 'TXC';
​

一阶段

过程:

  1. 解析 SQL:得到 SQL 的类型(UPDATE),表(product),条件(where name = 'TXC')等相关的信息。

  2. 查询前镜像:根据解析得到的条件信息,生成查询语句,定位数据。

select id, name, since from product where name = 'TXC';
​

得到前镜像:

idnamesince
1TXC2014
  1. 执行业务 SQL:更新这条记录的 name 为 'GTS'。

  2. 查询后镜像:根据前镜像的结果,通过主键定位数据。

select id, name, since from product where id = 1`;
​

得到后镜像:

idnamesince
1GTS2014
  1. 插入回滚日志:把前后镜像数据以及业务 SQL 相关的信息组成一条回滚日志记录,插入到UNDO_LOG表中。

{
    "branchId": 641789253,
    "undoItems": [{
        "afterImage": {
            "rows": [{
                "fields": [{
                    "name": "id",
                    "type": 4,
                    "value": 1
                }, {
                    "name": "name",
                    "type": 12,
                    "value": "GTS"
                }, {
                    "name": "since",
                    "type": 12,
                    "value": "2014"
                }]
            }],
            "tableName": "product"
        },
        "beforeImage": {
            "rows": [{
                "fields": [{
                    "name": "id",
                    "type": 4,
                    "value": 1
                }, {
                    "name": "name",
                    "type": 12,
                    "value": "TXC"
                }, {
                    "name": "since",
                    "type": 12,
                    "value": "2014"
                }]
            }],
            "tableName": "product"
        },
        "sqlType": "UPDATE"
    }],
    "xid": "xid:xxx"
}
​
  1. 提交前,向 TC 注册分支:申请product表中,主键值等于 1 的记录的全局锁

  2. 本地事务提交:业务数据的更新和前面步骤中生成的 UNDO LOG 一并提交。

  3. 将本地事务提交的结果上报给 TC。

二阶段-回滚

  1. 收到 TC 的分支回滚请求,开启一个本地事务,执行如下操作。

  2. 通过 XID 和 Branch ID 查找到相应的 UNDO LOG 记录。

  3. 数据校验:拿 UNDO LOG 中的后镜与当前数据进行比较,如果有不同,说明数据被当前全局事务之外的动作做了修改。这种情况,需要根据配置策略来做处理,详细的说明在另外的文档中介绍。

  4. 根据 UNDO LOG 中的前镜像和业务 SQL 的相关信息生成并执行回滚的语句:

update product set name = 'TXC' where id = 1;
​
  1. 提交本地事务。并把本地事务的执行结果(即分支事务回滚的结果)上报给 TC。

二阶段-提交

  1. 收到 TC 的分支提交请求,把请求放入一个异步任务的队列中,马上返回提交成功的结果给 TC。

  2. 异步任务阶段的分支提交请求将异步和批量地删除相应 UNDO LOG 记录。

附录

回滚日志表

UNDO_LOG Table:不同数据库在类型上会略有差别。

以 MySQL 为例:

FieldType
branch_idbigint PK
xidvarchar(100)
contextvarchar(128)
rollback_infolongblob
log_statustinyint
log_createddatetime
log_modifieddatetime
-- 注意此处0.7.0+ 增加字段 context
CREATE TABLE `undo_log` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `branch_id` bigint(20) NOT NULL,
  `xid` varchar(100) NOT NULL,
  `context` varchar(128) NOT NULL,
  `rollback_info` longblob NOT NULL,
  `log_status` int(11) NOT NULL,
  `log_created` datetime NOT NULL,
  `log_modified` datetime NOT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `ux_undo_log` (`xid`,`branch_id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
​

TCC 模式

回顾总览中的描述:一个分布式的全局事务,整体是两阶段提交的模型。全局事务是由若干分支事务组成的,分支事务要满足两阶段提交的模型要求,即需要每个分支事务都具备自己的:

  • 一阶段 prepare 行为

  • 二阶段 commit 或 rollback 行为

根据两阶段行为模式的不同,我们将分支事务划分为Automatic (Branch) Transaction ModeManual (Branch) Transaction Mode.

AT 模式(参考链接 TBD)基于支持本地 ACID 事务关系型数据库

  • 一阶段 prepare 行为:在本地事务中,一并提交业务数据更新和相应回滚日志记录。

  • 二阶段 commit 行为:马上成功结束,自动异步批量清理回滚日志。

  • 二阶段 rollback 行为:通过回滚日志,自动生成补偿操作,完成数据回滚。

相应的,TCC 模式,不依赖于底层数据资源的事务支持:

  • 一阶段 prepare 行为:调用自定义的 prepare 逻辑。

  • 二阶段 commit 行为:调用自定义的 commit 逻辑。

  • 二阶段 rollback 行为:调用自定义的 rollback 逻辑。

所谓 TCC 模式,是指支持把自定义的分支事务纳入到全局事务的管理中。

Saga 模式

Saga模式是SEATA提供的长事务解决方案,在Saga模式中,业务流程中每个参与者都提交本地事务,当出现某一个参与者失败则补偿前面已经成功的参与者,一阶段正向服务和二阶段补偿服务都由业务开发实现。

理论基础:Hector & Kenneth 发表论⽂ Sagas (1987)

适用场景:

  • 业务流程长、业务流程多

  • 参与者包含其它公司或遗留系统服务,无法提供 TCC 模式要求的三个接口

优势:

  • 一阶段提交本地事务,无锁,高性能

  • 事件驱动架构,参与者可异步执行,高吞吐

  • 补偿服务易于实现

缺点:

  • 不保证隔离性

XA模式

XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。

两阶段提交

XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。

正常情况:

异常情况:

一阶段:

  • 事务协调者通知每个事物参与者执行本地事务

  • 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁

二阶段:

  • 事务协调者基于一阶段的报告来判断下一步操作

    • 如果一阶段都成功,则通知所有事务参与者,提交事务

    • 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务

Seata的XA模型

Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型:

以下过程参考开头部分的seata事务管理架构图:

RM一阶段的工作:

① 注册分支事务到TC

② 执行分支业务sql但不提交

③ 报告执行状态到TC

TC二阶段的工作:

  • TC检测各分支事务执行状态

    a.如果都成功,通知所有RM提交事务

    b.如果有失败,通知所有RM回滚事务

RM二阶段的工作:

  • 接收TC指令,提交或回滚事务

优缺点

XA模式的优点是什么?

  • 事务的强一致性,满足ACID原则。

  • 常用数据库都支持,实现简单,并且没有代码侵入

XA模式的缺点是什么?

  • 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差

  • 依赖关系型数据库实现事务

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1261155.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

cesium不同版本对3dtiles的渲染效果不同,固定光照的优化方案

cesium不同版本对3dtiles的渲染效果不同,固定光照的优化方案,避免map.fixedLight true,导致的光照效果太强,模型太亮的问题。 问题来源: 1.Cesium1.47版本加载tileset.json文件跟Mars3d最新版加载文件存在差异效果 Cesium1.47…

leetcode:506. 相对名次

一、题目 函数原型:char** findRelativeRanks(int* score, int scoreSize, int* returnSize) 二、思路 创建一个新的数组newscore,将原数组数据拷贝到新数组,降序排序新数组。 遍历原数组,在新数组中找到原数组中数据在新数组中的…

yolov8-pose 推理流程

目录 一、关键点预测 二、图像预处理 二、推理 三、后处理与可视化 3.1、后处理 3.2、特征点可视化 四、完整pytorch代码 yolov8-pose tensorrt 一、关键点预测 注:本篇只是阐述推理流程,tensorrt实现后续跟进。 yolov8-pose的tensorrt部署代码…

C++ : 友元(未完结)

不能从外部访问类的私有数据成员和方法,但这条规则不适用于友元类和友元函数。要声明友元 类或友元函数,可使用关键字 friend,通过让函数成为类的友元,可以赋予该函数与类的成员函数 同的访问权限。 生活中你的家有客厅 (Public)…

3D模型顶点颜色转纹理【SIMPLYGON】

在这篇博客中,我们将了解如何将顶点颜色烘焙到纹理中。 其用例是某些照片扫描资产,其中颜色数据保存到顶点颜色中。 我们将了解如何使用 remesher 和聚合器管道来完成此操作。 我们还将介绍如何为顶点颜色材质创建着色网络以及如何从模型后处理中删除顶点…

leetcode每日一题34

89.格雷编码 观察一下n不同时的格雷编码有什么特点 n1 [0,1] n2 [0,1,3,2] n3 [0,1,3,2,6,7,5,4] …… 可以看到nk时,编码数量是nk-1的数量的一倍 同时nk编码的前半部分和nk-1一模一样 nk编码的最后一位是2k-1 后半部分的编码是其对应的前半部分的对称的位置的数字…

Matlab论文插图绘制模板第128期—函数三维折线图(fplot3)

在之前的文章中,分享了Matlab函数折线图的绘制模板: 进一步,再来分享一下函数三维折线图。 先来看一下成品效果: 特别提示:本期内容『数据代码』已上传资源群中,加群的朋友请自行下载。有需要的朋友可以关…

【后端】数据字典自动生成枚举

前言 随着我老板给我灌溉的思想,逐渐开始利用代码来完成一些重复性且没有创造性的工作(我变懒啦),当我发现数据字典可以生成枚举从而大大减少开发时间的时候,我意识到事情的重要性。 数据字典 我一开始在网上找各种代码生成器的框架,然后突然意识到,这个不就是简单的…

C语言键盘输入字符串小写转大写输出及scanf的小问题解决

1.博主在学习C语言时,也没太关注C语言的一些细节问题,导致后面有人问问题的时候一时没回答出来,也就是所谓的基础不牢地动山摇,比如这一次有同学问的scanf键盘输入的小问题,折腾了一阵子还是想出来问题所在。 2.废话不…

Docker:深入解析Nexus技术构建可靠的软件仓库管理系统

1、简述 在现代软件开发中,有效的软件仓库管理是确保项目成功的关键一环。Nexus Repository Manager作为一种流行的仓库管理系统,为开发人员提供了强大的工具,用于存储、检索和管理软件构建。本文将深入解析Nexus技术,探讨其关键…

瑞数五代ast反混淆笔记二

第一部分 瑞数五代ast反混淆笔记一 第二部分 瑞数五代ast反混淆笔记二 文章目录 前言一、分析思路二、轨迹合并思路三、避免重复调用一个轨迹四、自己调用自己所在的函数五、语句中包含if的处理六、语句中包含try的处理七、节点中包含影响自身值的操作总结 前言 当if转为switc…

机器视觉 AI 数据集制作

工业中,机器视觉物体分拣时,需要制作,数据集,那么,一般情况下,可以选择几个物体的几张图片,或者视频,将待识别的物体的掩模扣取出来,随机的贴在 传送带背景中&#xff0c…

多线程04 死锁,线程可见性

前言 前面我们讲到了简单的线程安全问题以及简单的解决策略 其根本原因是cpu底层对线程的抢占式调度策略,随机调度 其他还有一些场景的问题如下 1.多个线程同时修改一个变量问题 2.执行的操作指令本身不是原子的 比如自增操作就分为三步,加载,自增,保存 3.内存可见性问题 4.指令…

【vue】浏览器安装vue插件不生效

上一篇:浏览器安装vue插件 https://blog.csdn.net/m0_67930426/article/details/134598104 目录 问题情景 解决办法 问题情景 输入框无内容 解决办法 添加 Vue.config.devtools true; 并且控制台不显示的vue又出现

13.端点、簇、属性

源码地址:13.端点、簇、属性 端点(endPoint) 一个端点就是一个应用 一个字节编号,数据收和发送的基本单元,在模块通信的时候,发送模块必须指定收发双方模块的网络地址和端点。端点要使用必须要和模块里的…

「Linux」git的安装与使用

💻文章目录 📄前言安装git的使用配置git初始化 git 仓库提交文件推送到远端使用HTPPS方式:SSH方式 📓总结 📄前言 git是一款多平台的版本管理器,用于对代码进行版本控制,如果你还不知如何安装gi…

Git指定分支或文件回退到指定版本

文章目录 一、分支回滚1.1、使用 git reset 命令1.2、使用 git revert 命令1.3、使用 git checkout 命令 二、文件回滚2.1、回滚未提交文件2.2、回滚已提交文件2.2.1、首先查看文件的历史版本2.2.2、找到你想要还原的版本2.2.3、将文件还原到你想要还原的版本2.2.4、提交代码 三…

【数据结构初阶(5)】链式队列的基本操作实现

文章目录 队列的定义初始化队列队尾入队列队头出队列取队头元素取队尾元素获取队列有效元素个数判断队空销毁队列 因为队列比较简单,关于队列的概念就不过多赘述了,本文只讲链队的基本操作实现 队列的定义 定义队列结点结构 链队中的每个结点都应该包…

RK3568平台开发系列讲解(Linux系统篇)pinctrl api介绍及实验

🚀返回专栏总目录 文章目录 一、pinctrl函数介绍二、设备树案例三、驱动案例 沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇将介绍pinctrl api及其使用案例 。 一、pinctrl函数介绍 ①获取设备对应的 pinctrl…

在Matlab里安装gurobipy怎么安装教程

在Matlab 里安装gurobipy 先在CMD里激活, 然后添加系统环境变量 GRB_LICENSE_FILEC:\gurobi10.2\gurobi.lic 然后输入 addpath(D:\gurobi1003\win64\matlab) addpath(C:\gurobi1003\win64\matlab) addpath(C:\gurobi1002\win64\matlab) C:\gurobi1003\win64\m…